FOOD SCIENCE ›› 0, Vol. ›› Issue (): 0-0.
• Basic Research • Next Articles
振康 路 2, 2,
Received:2022-03-18
Revised:2023-03-08
Online:2023-04-15
Published:2023-04-19
CLC Number:
振康 路. Antibacterial effect and mechanism of juglone in walnut green skin on Escherichia coli[J]. FOOD SCIENCE, 0, (): 0-0.
| [1] JACOB C, MATHIASEN L, POWELL D. Designing effective messages for microbial food safety hazards [J]. Food Control, 2010, 21(1): 1-6. DOI:10.1016/j.foodcont.2009.04.011. [2] SILVA M M, LIDON F. Food preservatives–An overview on applications and side effects [J]. Emirates Journal of Food and Agriculture, 2016: 366-373. DOI:10.9755/ejfa.2016-04-351.[3] ZHANG L L, ZHANG L F, HU Q P, et al. Chemical composition, antibacterial activity of Cyperus rotundus rhizomes essential oil against Staphylococcus aureus via membrane disruption and apoptosis pathway [J]. Food Control, 2017, 80: 290-296. DOI:10.1016/j.foodcont.2017.05.016.[4] KLANCNIK A, MOZINA S S, ZHANG Q. Anti-Campylobacter activities and resistance mechanisms of natural phenolic compounds in Campylobacter [J]. PloS one, 2012, 7(12): e51800. DOI:10.1371/journal.pone.0051800.[5] 曹珊. 柑橘精油的化学成分、抗氧化及抑菌活性研究 [D]. 赣南师范大学, 2021: 35-40.[6] 任建敏. 植物类黄酮的生理功能与抗菌机制 [J]. 重庆工商大学学报(自然科学版), 2021, 38(06): 8-20. DOI:10.16055/j.issn.1672-058X.2021.0006.002. [7] 李奇松, 李家俊, 叶江华, 等. 茶多酚抗菌活性及其在水果复合保鲜剂中的应用 [J]. 福建农业科技, 2021, 52(10): 22-26. DOI:10.13651/j.cnki.fjnykj.2021.10.005. [8] 曲中原. 青龙衣抗肿瘤活性成分及其作用机制研究 [D]. 北京中医药大学, 2010: 50-56.[9] 仲军梅. 核桃青皮色素活性成分提取及其应用研究 [D]. 新疆大学, 2014: 6-8.[10] MASEK A, CHRZESCIJANSKA E, LATOS-BROZIO M, et al. Characteristics of juglone (5-hydroxy-1,4,-naphthoquinone) using voltammetry and spectrophotometric methods [J]. Food Chemistry, 2019, 301: 125279. DOI:10.1016/j.foodchem.2019.125279. [11] 温文兵, 刘淑萍. 青龙衣中胡桃醌的研究进展 [J]. 河北理工大学学报(自然科学版), 2011, 33(01): 141-144.[12] WU Y, BAI J, ZHONG K, et al. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus [J]. Food Chemistry, 2017, 218: 463-470. DOI:10.1016/j.foodchem.2016.07.090. [13] CUI S M, LI T, LIANG H Y, et al. Antibacterial activities and mechanisms of vine tea extract and 2R, 3R-Dihydromyricetin on Escherichia coli [J]. Lwt-Food Science and Technology, 2021, 146. DOI:10.1016/j.lwt.2021.111393. [14] KONG M, CHEN X G, LIU C S, et al. Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli [J]. Colloids Surf B Biointerfaces, 2008, 65(2): 197-202. DOI:10.1016/j.colsurfb.2008.04.003. [15] SHI Y G, BIAN L Q, ZHU Y J, et al. Multifunctional alkyl ferulate esters as potential food additives: Antibacterial activity and mode of action against Listeria monocytogenes and its application on American sturgeon caviar preservation [J]. Food Control, 2019, 96: 390-402. DOI:10.1016/j.foodcont.2018.09.030.[16] CUI S, MA X, WANG X, et al. Phenolic acids derived from rice straw generate peroxides which reduce the viability of Staphylococcus aureus cells in biofilm [J]. Industrial Crops and Products, 2019, 140. DOI:10.1016/j.indcrop.2019.111561. [17] JU J, XIE Y, YU H, et al. Synergistic inhibition effect of citral and eugenol against Aspergillus niger and their application in bread preservation [J]. Food Chemistry, 2020, 310: 125974. DOI:10.1016/j.foodchem.2019.125974. [18] KANG J, JIN W, WANG J, et al. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus [J]. Lwt-Food Science and Technology, 2019, 101: 639-645. DOI:10.1016/j.lwt.2018.11.093. [19] ZHANG Y, WU Y T, ZHENG W, et al. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae [J]. Journal of Functional Foods, 2017, 38: 273-279. DOI:10.1016/j.jff.2017.09.047. [20] CUI H, ZHANG C, LI C, et al. Antimicrobial mechanism of clove oil on Listeria monocytogenes [J]. Food Control, 2018, 94: 140-146. DOI:10.1016/j.foodcont.2018.07.007. [21] HE T F, ZHANG Z H, ZENG X A, et al. Determination of membrane disruption and genomic DNA binding of cinnamaldehyde to Escherichia coli by use of microbiological and spectroscopic techniques [J]. Journal of Photochemistry and Photobiology B, 2018, 178: 623-630. DOI:10.1016/j.jphotobiol.2017.11.015. [22] ZHAO L, ZHANG H, HAO T, et al. In vitro antibacterial activities and mechanism of sugar fatty acid esters against five food-related bacteria [J]. Food Chemistry, 2015, 187: 370-7. DOI:10.1016/j.foodchem.2015.04.108. [23] YE X, LI X, YUAN L, et al. Interaction of houttuyfonate homologues with the cell membrane of gram-positive and gram-negative bacteria [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301(1-3): 412-418. DOI:10.1016/j.colsurfa.2007.01.012. [24] PAREDES J, ALONSO-ARCE M, Schmidt C, et al. Smart central venous port for early detection of bacterial biofilm related infections [J]. Biomedical Microdevices, 2014, 16(3): 365-74. DOI:10.1007/s10544-014-9839-3. [25] RAKHMAWATIE M D, WIBAWA T, LISDIYANTI P, et al. Evaluation of crystal violet decolorization assay and resazurin microplate assay for antimycobacterial screening [J]. Heliyon, 2019, 5(8): e02263. DOI:10.1016/j.heliyon.2019.e02263. [26] FAN Y J, HSU Y C, GU B C, et al. Voltammetric measurement of Escherichia coli concentration through p-APG hydrolysis by endogenous β-galactosidase [J]. Microchemical Journal, 2020, 154. DOI:10.1016/j.microc.2020.104641. [27] SHEN S, ZHANG T, YUAN Y, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane [J]. Food Control, 2015, 47: 196-202. DOI:10.1016/j.foodcont.2014.07.003. [28] PANG B, HUANG L, TENG J, et al. Effect of pile fermentation on the cells of Chinese Liupao tea: The first record of cell wall of Liupao tea on transmission electron microscope [J]. Food Chemistry, 2021, 361: 130034. DOI:10.1016/j.foodchem.2021.130034. [29] LI Y Q, HAN Q, FENG J L, et al. Antibacterial characteristics and mechanisms of ?-poly-lysine against Escherichia coli and Staphylococcus aureus [J]. Food Control, 2014, 43: 22-27. DOI:10.1016/j.foodcont.2014.02.023. [30] NING Y, YAN A, YANG K, et al. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms [J]. Food Chemistry, 2017, 228: 533-540. DOI:10.1016/j.foodchem.2017.01.112. [31] EBRAHIMIPOUR S Y, SHEIKHSHOAIE I, MOHAMADI M, et al. Synthesis, characterization, X-ray crystal structure, DFT calculation, DNA binding, and antimicrobial assays of two new mixed-ligand copper(II) complexes [J]. Spectrochim Acta A Mol Biomol Spectrosc, 2015, 142: 410-22. DOI:10.1016/j.saa.2015.01.088. [32] LIU G, REN G, ZHAO L, et al. Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes [J]. Food Control, 2017, 73: 854-861. DOI:10.1016/j.foodcont.2016.09.036. [33] HU M, ZHU M, XIN L, et al. Change of benzo(a)pyrene during frying and its groove binding to calf thymus DNA [J]. Food Chemistry, 2021, 350: 129276. DOI:10.1016/j.foodchem.2021.129276. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||