| [1]. 邓伶俐, 阙斐, 韦何雯, 等. 乳液物理结构对食品体系氧化稳定性的影响[J]. 中国食品学报, 2017, 17(10): 176-183. DOI:10.16429/j.1009-7848.2017.10.024.[2]. 孙宏涛, 马燕, 郭洪涛, 等. 乳液体系包埋亚麻籽油研究进展[Z]//食品工业科技: 卷 43. 2022: 444-451.[3]. 李潇潇, 陈小威, 马传国. 乳化食品中油脂氧化分析及其货架期评价方法的研究进展[Z]//中国油脂: 卷 47. 2022: 103-108.[4]. Zhang Q, Saleh A S, Chen J, et al. Chemical alterations taken place during deep-fat frying based on certain reaction products: a review[J]. Chem Phys Lipids, 2012, 165(6): 662-81.[5]. Villeneuve P, Bourlieu-Lacanal C, Durand E, Lecomte J, McClements DJ, Decker EA. Lipid oxidation in emulsions and bulk oils: a review of the importance of micelles. Crit Rev Food Sci Nutr. 2023;63(20):4687-4727.[6]. Choe E, Min D B. Chemistry of deep-fat frying oils[J]. J Food Sci, 2007, 72(5): R77-86.[7]. 田瑞,王风艳,孙尚德,等.基于主成分分析的植物油煎炸品质评价[J].中国油脂,2024,49(10):20-28+33.DOI:10.19902/j.cnki.zgyz.1003-7969.230251.[8]. Ma L, Liu G, Cheng W, et al. The effect of heating on the formation of 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal in unsaturated vegetable oils: Evaluation of oxidation indicators[J]. Food Chem, 2020, 321: 126603.[9]. Wang Z, Li S, Cao Y, et al. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer[J]. Oxidative Medicine and Cellular Longevity, 2016, 2016: 1-15.[10]. Zamora R, Hidalgo F J. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products[J]. Trends in Food Science & Technology, 2016, 54: 165-174.[11]. Wang Y, Cui P. Reactive Carbonyl Species Derived from Omega-3 and Omega-6 Fatty Acids[J]. J Agric Food Chem, 2015, 63(28): 6293-6.[12]. Papastergiadis A, Fatouh A, Jacxsens L, et al. Exposure assessment of Malondialdehyde, 4-Hydroxy-2-(E)-Nonenal and 4-Hydroxy-2-(E)-Hexenal through specific foods available in Belgium[J]. Food and Chemical Toxicology, 2014, 73: 51-58.[13]. Feng Y, Cai Y, Fu X, et al. Comparison of aroma-active compounds in broiler broth and native chicken broth by aroma extract dilution analysis (AEDA), odor activity value (OAV) and omission experiment[J]. Food Chem, 2018, 265: 274-280.[14]. Rubalya Valantina S. Measurement of dielectric constant: A recent trend in quality analysis of vegetable oil - A review[J]. Trends in Food Science & Technology, 2021, 113: 1-11.[15]. Bansal G, Zhou W, Barlow P J, et al. Review of rapid tests available for measuring the quality changes in frying oils and comparison with standard methods[J]. Crit Rev Food Sci Nutr, 2010, 50(6): 503-14.[16]. Meenu M, Decker E A, Xu B. Application of vibrational spectroscopic techniques for determination of thermal degradation of frying oils and fats: a review[J]. Crit Rev Food Sci Nutr, 2022, 62(21): 5744-5765.[17]. Ma L, Liu G. Simultaneous Analysis of Malondialdehyde, 4-Hydroxy-2-hexenal, and 4-Hydroxy-2-nonenal in Vegetable Oil by Reversed-Phase High-Performance Liquid Chromatography[J]. J Agric Food Chem, 2017, 65(51): 11320-11328.[18]. Wang L, Csallany A S, Kerr B J, et al. Kinetics of Forming Aldehydes in Frying Oils and Their Distribution in French Fries Revealed by LC-MS-Based Chemometrics[J]. J Agric Food Chem, 2016, 64(19): 3881-9.[19]. Liu Z Y, Zhou D Y, Li A, et al. Effects of temperature and heating time on the formation of aldehydes during the frying process of clam assessed by an HPLC-MS/MS method[J]. Food Chem, 2020, 308: 125650.[20]. 葛运程, 尚宇瀚, 尹磊, et al. 超临界流体色谱-质谱联用技术及其应用研究进展[J]. 化学试剂, 2024, 46(07): 20-28.[21]. Antonelli M, Hol?apek M, Wolrab D. Ultrahigh-performance supercritical fluid chromatography-mass spectrometry for the qualitative analysis of metabolites covering a large polarity range[J]. Journal of Chromatography A, 2022, 1665.[22]. Ma L, Cui Y, Wang F, Liu H, Cheng W, Peng L, Brennan C, Benjakul S, Xiao G. Fast and sensitive UHPLC-QqQ-MS/MS method for simultaneous determination of typical α,β-unsaturated aldehydes and malondialdehyde in various vegetable oils and oil-based foods. Food Chem. 2023:134028.[23]. Broughton R, Tocher D R, Betancor M B. Development of a C18 Supercritical Fluid Chromatography-Tandem Mass Spectrometry Methodology for the Analysis of Very-Long-Chain Polyunsaturated Fatty Acid Lipid Matrices and Its Application to Fish Oil Substitutes Derived from Genetically Modified Oilseeds in the Aquaculture Sector[J]. ACS Omega, 2020, 5(35): 22289-22298.[24]. Daoud, S, Bou-Maroun, E, Waschatko, G, Cayot, P, Lipid oxidation in oil-in-water emulsions: Iron complexation by buffer ions and transfer on the interface as a possible mechanism[J]. Food Chemistry (2020), DOI:10.1016/j.foodchem.2020.128273.[25]. 胡起华.凝胶态水包油型和油包水型乳液中油脂氧化稳定性规律的研究[D].河南工业大学,2021.[26]. 余茜.多酚型抗氧化剂对植物油热氧化产生的α,β-不饱和醛的减控作用及机制研究[D]. 河南工业大学, 2023:55-74.[27]. 马路凯.植物油中丙二醛、4-羟基-2-己烯醛和4-羟基-2-壬烯醛的热响应机制研究[D].华南理工大学, 2019:80-95.[28]. 吴辰, 陈奕, 梅江, 等. 乳状液的氧化稳定性与抗氧化剂的作用机制[J]. 食品工业科技, 2015, 36(24): 380-384. DOI:10.13386/j.issn1002-0306.2015.24.075.[29]. 卢永翎, 章鼎敏, 肖留榜, 等. 杨梅素-丙烯醛加合物抗氧化及捕获丙烯醛活性[J]. 食品科学, 2020, 41(23): 1-7.[30]. Min Chen, Hua Zhou, Caihuan Huang, Pengzhan Liu, Jia Fei, et al. Identification and cytotoxic evaluation of the novel rutin-methylglyoxal adducts with dione structures in vivo and in foods[J]. Food Chemistry,2022,132008,https://doi.org/10.1016/j.foodchem.2021.132008.[31]. 张浩. 不同来源结合酚对活性羰基化合物的清除作用及其机制研究[D]. 江南大学, 2021:55-64. |