食品科学 ›› 2018, Vol. 39 ›› Issue (2): 222-226.doi: 10.7506/spkx1002-6630-201802035
孙晓荣,周子健,刘翠玲,付新鑫,窦颖
SUN Xiaorong, ZHOU Zijian, LIU Cuiling, FU Xinxin, DOU Ying
摘要: 为得到可靠的小麦粉中面筋含量定量分析模型,基于光谱预处理及模拟退火算法(simulated annealing algorithm,SAA)对近红外光谱(near infrared spectroscopy,NIR)进行优化处理。偏最小二乘(partial least squares,PLS)回归用于建立预测模型,以决定系数R2、校正均方根误差(root mean square error of calibration,RMSEC)、预测均方根误差(root mean square error of prediction,RMSEP)为指标,对比在不同光谱预处理条件下建立的回归模型与光谱预处理结合模拟退火算法优化处理条件下的回归模型。结果表明光谱预处理结合SAA-PLS模型能够有效提高模型的稳定性和预测能力,将R2从0.763?7提高到0.949?1、RMSEC从1.371?2降低到0.589?8、RMSEP从1.450?2降低到0.534?1。结果说明,光谱预处理结合模拟退火算法对光谱进行优化处理是可行的,模型预测能力和稳定性均优于未处理模型和仅进行光谱预处理的模型。
中图分类号: