食品科学 ›› 2019, Vol. 40 ›› Issue (16): 314-320.doi: 10.7506/spkx1002-6630-20180612-180
王 强,武 凯,王新宇,孙 宇,杨晓燕,楼晓华
WANG Qiang, WU Kai, WANG Xinyu, SUN Yu, YANG Xiaoyan, LOU Xiaohua
摘要: 针对盒装水饺中的异物严重危害消费者身心健康,以及传统金属检测机只能检测金属、检测结果无法直观可视的现状,建立一种基于LeNet卷积神经网络(convolutional neural networks,CNN)模型的异物水饺识别方法,对含有金属钢球、铁丝、螺钉、石头和玻璃5 种异物的X射线水饺图像进行检测。首先利用X射线检测设备获取无异物和异物水饺图像,对图像进行去噪和对比度拉伸变换处理。其次,采用批量归一化方法、Softmax线性回归分类器,以ReLu为激活函数、Max-Pooling为下采样方法,对设计的CNN模型进行优化、训练和验证。利用训练好的网络模型对无异物和异物水饺图像各100 幅进行测试,结果表明:该方法可以精确地识别异物水饺,识别率为99.78%。最后,通过提取局部二值模式、方向梯度直方图和Gabor常规纹理特征作为识别无异物和异物水饺的特征向量,利用BP神经网络、支持向量机(support vector machine,SVM)、K最邻近分类器、AdaBoost分类器、朴素贝叶斯分类器和决策树类器对水饺图像进行识别,将识别结果与本实验网络模型进行对比,验证了本实验算法的优越性和所提取特征的有效性。该研究为食品中的异物检测提供了新的思路,有利于保障食品安全。
中图分类号: