食品科学 ›› 2023, Vol. 44 ›› Issue (2): 327-336.doi: 10.7506/spkx1002-6630-20220306-078

• 安全检测 • 上一篇    

高光谱成像的红提总酸与硬度的预测及其分布可视化

高升,徐建华   

  1. (1.青岛理工大学信息与控制工程学院,山东 青岛 266520;2.中国民航大学空中交通管理学院,天津 300300)
  • 发布日期:2023-01-31
  • 基金资助:
    国家自然科学基金面上项目(31871863;32072302);湖北省自然科学基金项目(2012FKB02910); 湖北省研究与开发计划项目(2011BHB016)

Hyperspectral Imaging for Prediction and Distribution Visualization of Total Acidity and Hardness of Red Globe Grapes

GAO Sheng, XU Jianhua   

  1. (1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266520, China; 2. College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China)
  • Published:2023-01-31

摘要: 利用高光谱成像技术实现对红提总酸和硬度无损检测和分布可视化。首先,利用高光谱采集生长期360 个红提样本在波段450~1 000 nm的高光谱图像信息后用化学方法测定对应样本的总酸,用质构仪测定硬度。采用KS(Kennard-Stone)算法将总样本按照3∶1的比例划分为训练集(270 个样本)和测试集(90 个样本)。对红提原始光谱数据分别利用标准正态变量变换(standard normal variate transformation,SNV)、卷积平滑(Savitzky-Golay,SG)处理法、多元散射校正(multivariate scatter correction,MSC)、归一化等光谱预处理方法处理,确定最优光谱预处理方法。然后,分别采用一次降维(竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、连续投影算法(successive projections algorithm,SPA)、遗传算法(genetic algorithm,GA)、无信息变量消除法(uninformative variable elimination,UVE))算法和组合降维算法(CARS-SPA、UVE-SPA)6 种降维方法对光谱信息进行特征变量提取;分别建立红提总酸和硬度的偏最小二乘回归(partial least square regression,PLSR)最优预测模型。最后,根据所建最优预测模型计算红提图像每个像素点的总酸和硬度,得到灰度图像并对该灰度图像进行伪彩色变换,实现红提总酸和硬度的分布可视化。结果表明根据提取到的特征波长对生长期内的红提总酸和硬度进行建模分析得到:总酸的最优检测模型为MSC-CARS-SPA-PLSR,其预测集相关系数Rp和均方根误差分别为0.985 1、1.348 2,残差预测偏差(residual predictive deviation,RPD)为5.664 3;硬度的最优检测模型为SG-CARS-PLSR,其预测集相关系数Rp和均方根误差分别为0.929 1、7.935 4,RPD为2.510 8。综上利用高光谱成像技术可以实现红提总酸和硬度的检测与可视化分布,为生长期红提总酸和硬度的检测及可视化找到一种新方法。

关键词: 红提;总酸;硬度;高光谱成像;无损检测;可视化

Abstract: In this paper, hyperspectral imaging technology was used for nondestructive detection and distribution visualization of total acidity and firmness of red globe grapes. The hyperspectral information of 360 samples of growing red globe grapes in the wavelength range from 450 to 1 000 nm was collected using a hyperspectral instrument, and the total acidity and firmness of these samples were determined by titration and a texture analyzer, respectively. The Kennard-Stone (KS) algorithm was used to divide the total samples into a training set (270 samples) and a test set (90 samples) in a 3:1 ratio. The collected raw spectral data were preprocessed using various methods such as standard normal variate (SNV), Savitzky-Golay (SG), multivariate scatter correction (MSC), and normalization to determine the best spectral preprocessing method. Then, the feature variables were extracted from the spectral information using six dimensionality reduction algorithms: competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA), genetic algorithm (GA), uninformative variable elimination (UVE), CARS-SPA, and UVE-SPA. Using partial least squares regression (PLSR), optimal prediction models for total acidity and firmness were developed separately. Finally, the total acidity and hardness for each pixel of the hyperspectral image were calculated according to the proposed optimal prediction models, and a gray scale image was obtained and pseudo-color transformed to visualize the distribution of total acidity and firmness of red globe grapes. The results showed that the optimal prediction model for total acidity was MSC-CARS-SPA-PLSR, with correlation coefficient for the prediction set (Rp), root mean square errors of prediction (RMSEP) and residual predictive deviation (RPD) of 0.985 1, 1.348 2 and 5.664 3, respectively. The optimal prediction model for firmness was SG-CARS-PLSR, with Rp, RMSEP and RPD of 0.929 1, 7.935 4 and 2.510 8, respectively. In summary, hyperspectral imaging provides a new method for the detection and visualization of total acidity and firmness of growing red globe grapes.

Key words: red globe grapes; total acidity; firmness; hyperspectral imaging; nondestructive detection; visualization

中图分类号: