食品科学 ›› 2023, Vol. 44 ›› Issue (9): 374-381.doi: 10.7506/spkx1002-6630-20220427-359

• 专题论述 • 上一篇    下一篇

因果推断方法在微生物研究领域中的应用与展望

窦鑫,刘阳泰,裴晓燕,董庆利   

  1. (1.上海理工大学健康科学与工程学院,上海 200093;2.内蒙古乳业技术研究院有限责任公司,内蒙古 呼和浩特 010080)
  • 出版日期:2023-05-15 发布日期:2023-05-24
  • 基金资助:
    上海市农委2021年度科技兴农项目(X2021-02-08-00-12-F00782); 内蒙古自治区2020年中央引导地方科技发展资金项目

Application and Prospects of Causal Inference in Microbiological Research

DOU Xin, LIU Yangtai, PEI Xiaoyan, DONG Qingli   

  1. (1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010080, China)
  • Online:2023-05-15 Published:2023-05-24

摘要: 微生物群落的相互作用关系复杂,可单独或协同对宿主健康产生影响。通过应用因果推断方法分析微生物群与宿主观测数据间的关系特征,推断微生物对宿主健康的作用机制,以降低产生不良健康后果的可能性。本文综述了近年来因果推断在微生物领域的研究进展,介绍了因果关系的概念发展,阐述了因果推理、建模和解释的关系路径,同时也总结了其他领域中因果推理的方法与应用,重点讨论了微生物领域中应用因果推断方法解决的实际问题,但仍有大量微生物群落及其与外界的因果作用机制未探明。应用因果推断方法开展微生物群落分析或将是未来研究热点之一,需进一步完善因果推断的理论与方法,从而阐明微生物群落的相互作用机制及其与人体健康间的因果关系。

关键词: 微生物群落;人体健康;因果推断;风险评估;机器学习

Abstract: Microbial communities interact in a complicated way, which can have a detrimental effect on the host’s health either individually or collaboratively. By employing causal inference methods to analyze the characteristics of the relationship between the microbiota and host observation data, the mechanism of action of microorganisms on host health can be inferred, which will help to reduce the possibility of causing unfavorable health consequences. This article reviews recent progress in the application of causal inference in the field of microbiological research, introduces the conception and development of causality, describes the paths of causal inference, modeling and interpretation, and summarizes the causal inference methods and their applications in various fields especially in the microbiological field. However, the mechanism of the causality between microbial communities and their external environments is not yet understood fully. Applying causal inference methods in research on microbial communities will be a hot topic in the future. Thus, the theory and methods of causal inference need be further refined to elucidate the interaction mechanism of microbial communities and their causality with human health.

Key words: microbial communities; human health; causal inference; risk assessment; machine learning

中图分类号: