食品科学 ›› 2025, Vol. 46 ›› Issue (5): 57-64.doi: 10.7506/spkx1002-6630-20240804-031

• 基础研究 • 上一篇    下一篇

不同酿酒高粱品种性质与水化动力学的相关性

王红梅,李哲,李令,李姝,贾俊杰,汪茜,胡永芯,王松涛,沈才洪,钟小忠   

  1. (1.泸州品创科技有限公司(国家固态酿造工程技术研究中心),泸州老窖股份有限公司,四川 泸州 646000;2.四川农业大学生命科学学院,四川 雅安 625014)
  • 出版日期:2025-03-15 发布日期:2025-02-07
  • 基金资助:
    四川省自然科学基金面上项目(2024NSFSC0361)

Correlation between Physicochemical Properties of Different Sorghum Varieties for Baijiu Making and Their Hydration Kinetics

WANG Hongmei, LI Zhe, LI Ling, LI Shu, JIA Junjie, WANG Qian, HU Yongxin, WANG Songtao, SHEN Caihong, ZHONG Xiaozhong   

  1. (1. Luzhou Pinchuang Technology Co., Ltd. (National Solid State Brewing Engineering Technology Research Center), Luzhou Laojiao Co., Ltd., Luzhou 646000, China; 2. College of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China)
  • Online:2025-03-15 Published:2025-02-07

摘要: 为探究酿酒高粱内在性质对水化过程的影响,以实现对不同品种高粱泡粮过程水分的预测,本实验对23 个不同品种酿酒高粱的理化性质进行测定,并分析其在40 ℃恒温浸泡下的水化动力学过程。对高粱的水化动力学特性(初始吸水速率和平衡水分含量)与高粱的理化性质(种皮厚度、硬度、比表面积、蛋白质、脂肪、单宁、淀粉、直链淀粉和支链淀粉)进行相关性分析,发现高粱的水化动力学性质与比表面积、硬度、脂肪、单宁、直链淀粉和支链淀粉相关。建立输入层为籽粒硬度、比表面积、脂肪、单宁、直链淀粉、初始水分含量、浸泡时间,隐含节点数为10,输出层为高粱浸泡过程水分含量的反向传播(back propagation,BP)神经网络模型。采用Levenberg-Marquardt算法为训练函数,选择tansig-purelin为网络传递函数,经过有限次训练得到的BP神经网络模型其水分预测值与实验值之间的相关系数为0.99,均方误差为0.02。本研究建立的BP神经网络模型可预测不同品种酿酒高粱在泡粮过程中的水分含量,可为泡粮工艺的进一步开发和精细控制提供理论依据和技术支持。

关键词: 酿酒高粱;理化性质;水化动力学;反向传播神经网络;含水量预测

Abstract: This study investigated the effects of the intrinsic properties of sorghum for Baijiu production on its hydration process in order to enable prediction of the moisture content of different varieties of sorghum during soaking. The physicochemical properties of 23 cultivars of Baijiu sorghum were measured, and the kinetic process of their hydration was analyzed upon soaking at a constant temperature of 40 ℃. Besides, the correlation between the hydration kinetics characteristics (initial hydration rate and equilibrium moisture content) and physicochemical properties of sorghum (seed coat thickness, hardness, specific surface area, protein, fat, tannin, starch, amylose, amylopectin) was analyzed. It was found that the hydration kinetics characteristics of sorghum were correlated with the specific surface area, hardness, fat, tannin, amylose and amylopectin. A backward propagation (BP) neural network model with 10 nodes in the hidden layer was established using the hardness, specific surface area, fat, tannin, amylose, soaking time and initial moisture content as the input layer, and the moisture content of sorghum as the output layer. Using the Levenberg-Marquardt (L-M) algorithm as the training function and tansig-purelin as the network transfer function, the BP neural network model was obtained after finite training. The correlation coefficient (r) between the predicted and the experimental values of the moisture content was 0.99, and the mean square error (MSE) was 0.02. This BP neural network model was capable of predicting the moisture content in different varieties of Baijiu sorghum during the soaking process. This research provides a theoretical foundation and technical support for the further development and precise control of the soaking process.

Key words: Baijiu sorghum; physicochemical properties; hydration kinetics; backward propagation neural network; water content prediction

中图分类号: