食品科学 ›› 2025, Vol. 46 ›› Issue (24): 1-8.doi: 10.7506/spkx1002-6630-20250709-069

• 基于计算机视觉和深度学习的食品检测技术专栏 •    

基于高光谱图像区域特征优选的猕猴桃可溶性固形物含量无损预测模型构建

卞子晗,陈谦,李佳利,刘子涵,帅博宇,欧阳凌欢,赵峙尧,钱建平   

  1. (1.北京工商大学计算机与人工智能学院,北京 100048;2.中国农业科学院农业资源与农业区划研究所,北京 100081)
  • 发布日期:2025-12-26
  • 基金资助:
    “十四五”国家重点研发计划项目(2022YFD1600703;2022YFF1101103); 北京市高层次创新创业人才支持计划科技新星计划项目(20240484720); 北京市属高校优秀青年人才培育计划项目(BPHR202203043)

Predictive Modeling for Nondestructive Determination of Soluble Solids Content in Kiwifruits Based on Optimized Regional Features of Hyperspectral Images

BIAN Zihan, CHEN Qian, LI Jiali, LIU Zihan, SHUAI Boyu, OUYANG Linghuan, ZHAO Zhiyao, QIAN Jianping   

  1. (1. School of Computer and Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China; 2. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China)
  • Published:2025-12-26

摘要: 本研究系统量化分析不同感兴趣区域(region of interest,ROI)特征(部位、形状、尺度)与猕猴桃可溶性固形物含量(soluble solids content,SSC)预测精度的相关性规律,以构建集成高光谱成像与ROI优选的猕猴桃SSC预测模型框架。针对全果ROI区域光谱数据,分别利用多元散射校正(multiplicative scatter correction,MSC)、Savitzky-Golay(SG)平滑、标准正态变量变换(standard normal variate,SNV)及SNV-SG平滑方法进行预处理,建立偏最小二乘回归模型以预测猕猴桃SSC,并通过性能分析确定模型处理策略。进一步分别提取猕猴桃赤道、花萼、果梗处不同形状、尺度组合ROI光谱信息进行模型预测精度对比。结果表明,SNV预处理效果最佳,全果ROI预测集的决定系数(RP2)=0.832 7、预测均方根误差(root mean square error of prediction,RMSEP)=0.387 1。ROI特征对猕猴桃SSC预测准确性有显著影响,呈现“赤道>花萼>果梗”“圆形>方形”“小尺度>大尺度”的影响规律;而赤道处小圆形ROI预测结果最优,RP2=0.917 3、RMSEP=0.221 7。本研究验证了高光谱图像ROI优选对模型性能的关键作用,明确了“赤道-圆形-小尺度”的组合特征优势,可为利用高光谱技术提高猕猴桃SSC预测效果提供有效途径。

关键词: 高光谱成像;猕猴桃;可溶性固形物含量;感兴趣区域;特征优选

Abstract: This study systematically quantified and analyzed the correlation between different regions of interest (ROI) characteristics (part, shape, and size) and the prediction accuracy of soluble solids content (SSC) in kiwifruits to build a kiwifruit SSC prediction model by integrating hyperspectral imaging with ROI selection. The ROI spectral data of whole fruits were preprocessed using multiplicative scatter correction (MSC), Savitzky-Golay (SG) smoothing, standard normal variate (SNV) transformation, or SNV-SG smoothing. A partial least squares regression model was established to predict the SSC of kiwifruits, and performance analysis was conducted to determine the optimal preprocessing strategy. Furthermore, we extracted the ROI spectral information of different shape and size combinations at the equator, calyx, and peduncle of kiwifruits to compare the accuracy of the prediction model. The results revealed that SNV preprocessing yielded the best performance, with a coefficient of determination (RP2) of 0.832 7 and a root mean square error of prediction (RMSEP) of 0.387 1 for whole-fruit ROI prediction set. The ROI characteristics significantly impacted the accuracy of SSC prediction, and the effects of fruit part, shape, and size followed the decreasing order: equator > calyx > pedicel; circular > square; and small > large. Notably, the small circular ROI at the equator yielded the optimal prediction, with RP2 = 0.917 3 and RMSEP = 0.221 7. This study demonstrates the crucial role of ROI optimization in hyperspectral image modeling, clarifies the advantages of the “equator-circular-small” combination, and provides an effective approach for improving the prediction accuracy of SSC in kiwifruits using hyperspectral technology.

Key words: hyperspectral imaging; kiwifruit; soluble solids content; region of interest; feature optimization

中图分类号: