食品科学 ›› 2025, Vol. 46 ›› Issue (4): 136-146.doi: 10.7506/spkx1002-6630-20240730-290

• 营养卫生 • 上一篇    

高脂饮食诱导小鼠粪菌体外发酵叶绿素a、b后的肠道菌群及代谢组分析

陈玉瑶,王元楷,曾全恒,周纯洁,蔡甜,陈科伟   

  1. (1.西南大学食品科学学院,重庆 400715;2.中匈食品科学合作研究中心,重庆 400715;3.重庆市食品药品检验检测研究院,国家市场监管重点实验室(调味品监管技术),重庆 401121;4.西南大学化学化工学院,重庆 400715;5.川渝共建特色食品重庆市重点实验室,重庆 400715)
  • 发布日期:2025-02-07
  • 基金资助:
    “十四五”国家重点研发计划重点专项(2023YFE0116100); 重庆市科委基础研究与前沿探索项目(CSTB2022NSCQ-MSX0633); 西南大学创新研究2035先导计划重点项目(SWU-XDZD22007)

Effects of in Vitro Culture with Chlorophyll a or b on the Fecal Flora Composition of High-Fat-Fed Mice and Metabolomic Analysis of Fermentation Products

CHEN Yuyao, WANG Yuankai, ZENG Quanheng, ZHOU Chunjie, CAI Tian, CHEN Kewei   

  1. (1. College of Food Science, Southwest University, Chongqing 400715, China; 2. Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, China; 3. Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing Institute for Food and Drug Control, Chongqing 401121, China; 4. School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; 5. Chongqing Key Laboratory of Speciality Food Co-built by Sichuan and Chongqing, Chongqing 400715, China)
  • Published:2025-02-07

摘要: 通过代谢组学和微生物多样性研究,探讨叶绿素及其结构对高脂饮食诱导小鼠肠道菌群的影响。结果表明,经粪菌体外发酵48 h后叶绿素被肠道微生物转化、降解,其主要衍生物为氧化产物(132-羟基叶绿素a、151-羟基内酯叶绿素b、132-羟基叶绿素b)和脱镁衍生物(脱镁叶绿素a和132-羟基脱镁叶绿素b),减少的叶绿素降解成非荧光代谢物(m/z 666.289 5)、荧光代谢物(m/z 614.273 5、618.268 4、792.321 2)及丙酸吡咯衍生物(m/z 223.071 3)等。微生物多样性研究结果表明,补充叶绿素能够下调埃希氏-志贺菌属(Escherichia-Shigella)并上调不动杆菌属(Acinetobacter),且叶绿素a与叶绿素b对微生物丰度和种类有不同作用。靶向代谢组测定发酵后粪便的脂肪酸含量无明显差异。非靶向代谢组学研究结果显示,补充叶绿素会引起粪便代谢物的差异(叶绿素a、b组均有更多抗生素合成),这些代谢物主要富集在叶绿素a组的己内酰胺降解通路和叶绿素b组的12、14和16元大环内酯的生物合成通路,且两组有15 条共同通路。本研究将有助于解释补充叶绿素对高脂饮食诱导小鼠肠道菌群的影响,并为研究叶绿素与肠道菌群之间的相互作用提供借鉴。

关键词: 叶绿素;粪菌发酵;肠道菌群;高脂饮食;短链脂肪酸;非靶向代谢组学

Abstract: The objective of this study was to investigate the effect of chlorophyll a versus b on the intestinal flora of mice induced by a high-fat diet (HFD) metabolomics combined with microbial diversity analysis. Results demonstrated that chlorophyll was transformed and degraded by the intestinal flora after 48 h culture in vitro. Its major derivatives included oxides (132-hydroxy chlorophyll a, 151-hydroxy-lactone chlorophyll b, and 132-hydroxy chlorophyll b) and magnesium-free derivatives (pheophytin a and 132-hydroxy pheophytin b). The reduced chlorophyll was degraded into non-fluorescent metabolites (m/z 666.289 5), fluorescent metabolites (m/z 614.273 5, 618.268 4, and 792.321 2) and pyrrole derivatives of propionate (m/z 223.071 3). Microbial diversity analysis showed that the addition of chlorophyll down-regulated Escherichia-Shigella and up-regulated Acinetobacter, and chlorophyll a and chlorophyll b had different effects on the microbial abundance and species. Targeted metabolomics showed no significant difference in fatty acid contents among the control and chlorophyll addition groups. Untargeted metabolomics showed that chlorophyll addition resulted in differences in fecal metabolites (both chlorophyll a and b led to the synthesis of more antibiotics). These metabolites were mainly enriched in the caprolactam degradation pathway and the macrolide biosynthesis pathway 12, 14 and 16 for the chlorophyll a and b groups, respectively, with 15 shared pathways being found between the two groups. The results of this study will help to understand the effect of chlorophyll supplementation on the gut microbiota of HFD-induced mice, and provide useful information for understanding the interaction between chlorophyll and the intestinal flora.

Key words: chlorophyll; fecal flora fermentation; gut microbiota; high-fat diet; short-chain fatty acids; untargeted metabolomics

中图分类号: