FOOD SCIENCE ›› 0, Vol. ›› Issue (): 0-0.
• Reviews • Next Articles
LING Zhizhou2, 3, 3, 3, 3, 3, 3,
Received:
2022-04-20
Revised:
2023-03-05
Online:
2023-04-15
Published:
2023-04-19
CLC Number:
LING Zhizhou. Research Progress on Composition Structure Characteristics, Activity Mechanism and Quality Control of Kudingcha (Ligustrum robustum (Roxb.) Blume)[J]. FOOD SCIENCE, 0, (): 0-0.
[1] 刘国民. 我国的木犀科苦丁茶资源及其开发利用概况[J]. 贵州科学, 2015, 33(01): 71-75. [2] LU S H, ZUO H J, SHI J X, et al. Two new glycosides from the leaves of Ligustrum robustum and their antioxidant activities and inhibitory effects on α-glucosidase and α-amylase[J]. South African Journal of Botany, 2019, 125: 521-526. DOI: 10.1016/j.sajb.2019.07.028.[3] 卫生部. 卫生部关于同意木犀科粗壮女贞苦丁茶为普通食品的批复[J]. 中国食品卫生杂志, 2012, 24(02): 165. DOI: 10.13590/j.cjfh.2012.02.012.[4] 袁海梅, 邱露, 宋雨, 等. 花椒属植物苯丙素类成分及其药理活性研究进展[J]. 中国中药杂志, 2021, 46(22): 5760-5772. DOI: 10.19540/j.cnki.cjcmm.20210531.601.[5] LI Li, PENG Yong, XU Lijia, et al. Chemical constituents from Ligustrum robustum Bl[J]. Biochemical Systematics and Ecology, 2010, 38(3): 398-401. DOI: 10.1016/j.bse.2010.03.010.[6] LI Li, PENG Yong, LIU Yong , et al. Two new phenethanol glycosides from Ligustrum robustum[J]. Chinese Chemical Letters, 2011, 22(3): 326-329. DOI: 10.1016/j.cclet.2010.10.030.[7] FAN Long, LIAO Chenghui, LI Shuoguo, et al. Phenylethanoid and secoiridoid glycosides from the leaves of Ligustrum purpurascens[J]. Phytochemistry Letters, 2015, 13: 177-181. DOI: 10.1016/j.phytol.2015.06.011.[8] CHEN Qianqian, GUO Jianru, FENG Suoming, et al. Quantitation of ligupurpurosides B and C in rat plasma using HPLC-MS/MS[J]. Chinese Journal of Natural Medicines, 2016, 14(6): 473-480. DOI: 10.1016/S1875-5364(16)30045-0.[9] LI Li, XU Lijia, PENG Yong, et al. Simultaneous determination of five phenylethanoid glycosides in small-leaved Kudingcha from the Ligustrum genus by UPLC/PDA[J]. Food Chemistry, 2012, 131(4): 1583-1588. DOI: 10.1016/j.foodchem.2011.10.018.[10] HE Zhendan, LAU K, BUT P P, et al. Antioxidative glycosides from the leaves of Ligustrum robustum[J]. Journal of Natural Products, 2003, 66(6): 851-854. DOI: 10.1021/np020568g.[11] 刘美红, 李帅岚, 张莲, 等. 女贞属植物的化学成分和药理活性研究进展[J]. 中草药, 2020, 51(12): 3337-3348. DOI: 10.7501/j.issn.0253-2670.2020.12.028.[12] CHEN Beibei, WEI Junping, ZHU Ruyuan, et al. Fructus Ligustri Lucidi aqueous extract promotes calcium balance and short-chain fatty acids production in ovariectomized rats[J]. Journal of Ethnopharmacology, 2021, 279: 114348. DOI: 10.1016/j.jep.2021.114348.[13] 谭会颖, 陈文华, 孙晓蕾, 等. 女贞属主要药用植物化学成分研究进展[J]. 中药材, 2020, 43(03): 750-757. DOI: 10.13863/j.issn1001-4454.2020.03.046.[14] TIAN Jun, ZHANG Hongjie, SUN Handong, et al. Monoterpenoid glycosides from Ligustrum robustum[J]. Phytochemistry (Oxford), 1998, 48(6): 1013-1018. DOI: 10.1016/S0031-9422(97)00472-X.[15] ZHU Fan, CAI Yizhong, SUN Mei, et al. Comparison of major phenolic constituents and in vitro antioxidant activity of diverse Kudingcha genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum[J]. Journal of Agricultural and Food Chemistry, 2009, 57(14): 6082-6089. DOI: 10.1021/jf901020h.[16] TIAN Jun, ZHANG Hongjie, SUN Handong, et al. Five new glycosides, ligurobustosides E, F, I, J and K from Ligustrum robustum[J]. Chinese Chemical Letters, 1997, 0(02): 125-128.[17] SONG Xun, LI Chenyang, ZENG Yong, et al. Immunomodulatory effects of crude phenylethanoid glycosides from Ligustrum purpurascens[J]. Journal of Ethnopharmacology, 2012, 144(03): 584-591. DOI: 10.1016/j.jep.2012.09.047.[18] TIAN Jun, ZHANG Hongjie, SUN Handong, et al. Four new glycosides, ligurobustosides A, B, C and D from Ligustrum robustum[J]. Chinese Chemical Letters, 1996, 7(04): 341-344.[19] 张娜, 程满环, 周蔚. 利用UPLC-Q-TOF-MS技术鉴别粗壮女贞的化学成分[J]. 山西能源学院学报, 2018, 31(04): 137-139.[20] ITO H, OTSUKI A, MORI H, et al. Two new monoterpene glycosides from Qing Shan Lu Shui tea with inhibitory effects on leukocyte-type 12-lipoxygenase activity[J]. Molecules, 2013, 18(4): 4257-4266. DOI: 10.3390/molecules18044257.[21] YU Zhilong, GAO Haoxiang, ZHANG Zeng, et al. Inhibitory effects of Ligustrum robustum (Rxob.) Blume extract on α-amylase and α-glucosidase[J]. Journal of Functional Foods, 2015, 19: 204-213 . DOI: 10.1016/j.jff.2015.09.048.[22] YU Zhilong, ZENG Weicai. Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract[J]. Journal of Food Science, 2013, 78(9): 1354-1362. DOI: 10.1111/1750-3841.12224.[23] 黄林芳. 川产苦丁茶的品种、品质研究[D]. 成都: 成都中医药大学, 2003: 28-43.[24] 钟港, 陈东. 黄酮类化合物在脂肪代谢中的作用机制研究进展[J/OL]. 动物营养学报: 1-12 [2022-03-09]. http://kns.cnki.net/kcms/detail/11.5461.S.20220223.1138.045.html.[25] GAO Haoxiang, LIANG Hengyu, CHEN Nan, et al. Potential of phenolic compounds in Ligustrum robustum (Rxob.) Blume as antioxidant and lipase inhibitors: multi‐spectroscopic methods and molecular docking[J]. Journal of Food Science, 2022, 87(02): 651-663. DOI: 10.1111/1750-3841.16020.[26] 赵宁, 张紫文, 李晨晨, 等. 粗壮女贞乙醇提取物化学成分研究[J]. 中国现代中药, 2018, 20(05): 540-544. DOI: 10.13313/j.issn.1673-4890.20171113005.[27] 李丽. 小叶苦丁茶质量控制方法研究与紫草科苦丁茶的亲缘学意义初探[D]. 北京: 中国协和医科大学, 2009: 89-114.[28] 叶善蓉. 四川苦丁茶的主要生理特性及化学成分研究[D]. 雅安市: 四川农业大学, 2004: 29-34.[29] 刘莉, 李清, 陈晓辉, 等. GC法同时测定粗壮女贞苦丁茶中4种挥发性成分[J]. 中成药, 2011, 33(06): 997-1000.[30] 刘兴宽, 郁建平, 肖云鹏. 贵州苦丁茶原植物粗壮女贞挥发油成分分析[J]. 山地农业生物学报, 2003, 22(04): 329-331. DOI: 10.15958/j.cnki.sdnyswxb.2003.04.012.[31] ZHOU Tao, CHEN Jiayi, CHEN Yuhang, et al. Ligustrum robustum intake, weight loss, and gut microbiota: an intervention trial[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019, 4643074. DOI: 10.1155/2019/4643074.[32] 唐茜, 单虹丽, 杨安. 四川苦丁茶化学成分的初步研究[J]. 四川农业大学学报, 2003, 21(03): 237-240. DOI: 10.16036/j.issn.1000 -2650.2003.03.013.[33] CHEN Man, ZHENG Junping, ZOU Xiaojuan, et al. Ligustrum robustum (Roxb.) blume extract modulates gut microbiota and prevents metabolic syndrome in high-fat diet-fed mice[J]. Journal of Ethnopharmacology, 2021, 268: 113695. DOI: 10.1016/j.jep.2020.113695.[34] WU Ya, YANG Jun, LIU Xiaojing, et al. Preventive effect of small‐leaved Kuding tea (Ligustrum robustum) on high‐diet‐induced obesity in C57BL/6J mice[J]. Food Science & Nutrition, 2020, 8(8): 4512-4522. DOI: 10.1002/fsn3.1758.[35] YANG Runmei, CHU Xinxin, SUN Le, et al. Hypolipidemic activity and mechanisms of the total phenylpropanoid glycosides from Ligustrum robustum (Roxb.) Blume by AMPK‐SREBP‐1c pathway in hamsters fed a high‐fat diet[J]. Phytotherapy Research, 2018, 32(4): 715-722. DOI: 10.1002/ptr.6023.[36] YANG Runmei, LIU Fang, HE Zhendan, et al. Anti-obesity effect of total phenylpropanoid glycosides from Ligustrum robustum Blume in fatty diet-fed mice via up-regulating leptin[J]. Journal of Ethnopharmacology, 2015, 169(01): 459-465. DOI: 10.1016/j.jep.2014.12.066.[37] SUN Le, FAN Yu, FAN Yi, et al. Acteoside from Ligustrum robustum (Roxb.) Blume ameliorates lipid metabolism and synthesis in a HepG2 cell model of lipid accumulation[J]. Frontiers in Pharmacology, 2019, 10, 602. DOI: 10.3389/fphar.2019.00602.[38] 张紫文, 李晨晨, 潘瑞乐, 等. 基于蛋白质组学探讨粗壮女贞总苷对高脂血症金黄地鼠的调脂作用机制[J]. 中国药理学通报, 2019, 35(08): 1126-1133.[39] WU Xuli, FENG Yue, LU Yuqin, et al. Effect of phenolic hydroxyl groups on inhibitory activities of phenylpropanoid glycosides against lipase[J]. Journal of Functional Foods, 2017, 38: 510-518. DOI: 10.1016/j.jff.2017.09.022.[40] KAWAKAMI Y , OTSUKI A, MORI Y, et al. Involvement of the hydroperoxy group in the irreversible inhibition of leukocyte-type 12-lipoxygenase by monoterpene glycosides contained in the Qing Shan Lu Shui tea[J]. Molecules (Basel, Switzerland), 2019, 24(02), 304. DOI: 10.3390/molecules24020304.[41] FENG Yue, LV Moyang, LU Yuqin, et al. Characterization of binding interactions between selected phenylpropanoid glycosides and trypsin[J]. Food Chemistry, 2018, 243(15): 118-124. DOI: 10.1016/j.foodchem.2017.09.118.[42] WU Xuli, WANG Wenpu, ZHU Tian, et al. Phenylpropanoid glycoside inhibition of pepsin, trypsin and α-chymotrypsin enzyme activity in Kudingcha leaves from Ligustrum purpurascens[J]. Food Research International, 2013, 54(02): 1376-1382. DOI: 10.1016/j.foodres.2013.10.020.[43] CHEN Jiayi, HE Fangting, LIU Sijing, et al. Cytoprotective effect of Ligustrum robustum polyphenol extract against hydrogen peroxide-induced oxidative stress via Nrf2 signaling pathway in Caco-2 cells[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 5026458. DOI: 10.1155/2019/5026458.[44] 刘珊, 李俐漫, 左浩江, 等. 粗壮女贞对氧化损伤血管内皮细胞的保护作用[J]. 现代预防医学, 2017, 44(02): 297-300.[45] LIU Bihui, MA Ruidong, ZHANG Jing, et al. Preventive effect of small-leaved Kuding Tea ( Ligustrum robustum (Roxb.) Bl.) polyphenols on D-Galactose-Induced oxidative stress and aging in mice[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019: 3152324. DOI: 10.1155/2019/3152324.[46] 谭强, 缪睿. 大孔吸附树脂提取粗壮女贞苦丁茶总黄酮及抗氧化活性[J]. 西北民族大学学报(自然科学版), 2016, 37(04): 11-15. DOI: 10.14084/j.cnki.cn62-1188/n.2016.04.004.[47] 于志龙, 张曾, 祝瑞雪, 等. 粗壮女贞苦丁茶提取物的抗氧化活性研究[J]. 中国食品学报, 2017, 17(10): 234-240. DOI: 10.16429/j.1009-7848.2017.10.031.[48] 李兴桥, 陈嘉熠, 熊靖飞, 等. 川产粗壮女贞水提物体外抗氧化能力的比对研究[J]. 现代预防医学, 2016, 43(21): 3966-3968.[49] HU Xiaopeng, SHAO Minming, SONG Xun, et al. Anti-influenza virus effects of crude phenylethanoid glycosides isolated from Ligustrum purpurascens via inducing endogenous interferon-γ[J]. Journal of Ethnopharmacology, 2016, 179(17): 128-136. DOI: 10.1155/2019/3152324.[50] 杨慧萍, 徐佳楠, 唐明圆, 等. 粗壮女贞提取物抗甲型H1N1流感病毒的细胞代谢组学初探[J]. 现代预防医学, 2019, 46(24): 4484-4488.[51] 李晶晶, 徐佳伊, 左浩江, 等. 粗壮女贞提取物抗甲型流感病毒的作用及机制初探[J]. 现代预防医学, 2022, 49(03): 503-507.[52] ZHANG Zhong, ZENG Jumei, ZHOU Xuedong, et al. Activity of Ligustrum robustum (Roxb.) Blume extract against the biofilm formation and exopolysaccharide synthesis of Streptococcus mutans[J]. Molecular Oral Microbiology, 2020, 36(01): 67-79. DOI: 10.1111/omi.12328.[53] 杜晓昕, 叶倩, 陈凡, 等. 粗壮女贞水提物对金黄色葡萄球菌耐药株的抑菌效果及与抗生素的联合抑菌作用[J]. 现代预防医学, 2014, 41(05): 894-897.[54] 黄梦姣, 卢添林, 王瑶, 等. 粗壮女贞不同萃取部位抑菌活性成分研究[J]. 现代预防医学, 2016, 43(05): 864-866.[55] QIAO Zhiguang, TANG Jiaxin, WU Wen, et al. Acteoside inhibits inflammatory response via JAK/STAT signaling pathway in osteoarthritic rats[J]. BMC Complementary and Alternative Medicine,2019, 19(01): 264. DOI: 10.1186/s12906-019-2673-7.[56] 杨飞, 罗姝菡, 万思齐, 等. 粗壮女贞改善高胆碱膳食小鼠结肠屏障功能及减轻肠道炎症反应[J]. 现代预防医学, 2021, 48(02): 316-320.[57] ZHU Shenglong, WEI Lengyun, LIN Guangxiao, et al. Metabolic alterations induced by Kudingcha lead to cancer cell apoptosis and metastasis inhibition[J]. Nutrition and Cancer, 2020, 72(04): 696-707. DOI: 10.1080/01635581.2019.1645865.[58] ZUO Haojiang, LIU Shan, YAN Chun, et al. in Vitro and in vivo evaluation of antitumor activity of Ligustrum robustum, a Chinese herbal tea[J]. Chinese Journal of Integrative Medicine, 2019, 25(06): 425-430. DOI: 10.1007/s11655-018-2983-5.[59] 曹芳, 陈明, 冯文静, 等. 粗壮女贞提取物对2型糖尿病小鼠的降血糖效果及作用机制[J]. 中华中医药学刊, 2016, 34(12): 2981-2984. DOI: 10.13193/j.issn.1673-7717.2016.12.045.[60] 冯玥. 小叶苦丁茶主要活性成分降糖作用机制的初步研究[D]. 深圳: 深圳大学, 2018: 33-47. [61] 徐佳伊, 周涛, 何方婷, 等. 饮用粗壮女贞苦丁茶对心血管疾病相关指标的影响[J]. 现代预防医学, 2018, 45(15): 2752-2755.[62] 刘冠萍, 黄宇声, 张栩颜, 等. 粗壮女贞对小鼠耐缺氧作用的影响[J]. 中国民族民间医药, 2012, 21(07): 34.[63] LONG Xingyao, PAN Yanni, ZHAO Xin. Prophylactic effect of Kudingcha polyphenols on oxazolone induced colitis through its antioxidant capacities[J]. Food Science and Human Wellness, 2018, 7(03), 209-214. DOI: 10.1016/j.fshw.2018.06.002.[64] GAN Renyou, ZHANG Dan, WANG Min, et al. Health benefits of bioactive compounds from the genus Ilex, a source of traditional caffeinated beverages[J]. Nutrients, 2018, 10(11): 1682. DOI: 10.3390/nu10111682.[65] 张倩茹, 娄方明, 王强. 红外指纹光谱法鉴定黔产苦丁茶的植物来源[J]. 中国野生植物资源, 2012, 31(02): 38-40.[66] 郑道君, 梁远发, 刘国民, 等. 木犀科苦丁茶种质资源的RAPD分析[J]. 中国农业科学, 2008, 41(12): 4164-4172. DOI: 10.3864/j.issn.0578-1752.2008.12.029.[67] 谷婧, 彭勇, 许利嘉, 等. 苦丁茶商品的原植物调查与性状鉴别[J]. 中药材, 2011, 34(02): 196-199. DOI: 10.13863/j.issn1001-4454.2011.02.030. |
[1] | XIE Yingying, PANG Xu, ZHOU Haiyong, XU Jian, QI Jiaojiao, ZHU Jianfeng, LI Xueling, YANG Meiyan, HU Wenfeng. Action Mechanisms of Postbiotics and Their Applications in Food Field [J]. FOOD SCIENCE, 2024, 45(8): 354-363. |
[2] | XU Mengyue, DING Zeyu, LI Jinpeng, WANG Can, WANG Mingyang, LIU Qin, ZENG Changli, WANG Hongbo. Comparison of Structural Characteristics and Major Biological Activities of Polysaccharides from Soybean and Natto [J]. FOOD SCIENCE, 2024, 45(7): 78-86. |
[3] | Chao YANG Xiazhi SUN. Effects of Lycium barbarum Leaves Flavonoids on Lipid Metabolism of HepG2 Cells and Mechanism of Action [J]. FOOD SCIENCE, 2024, 45(11): 0-0. |
[4] | ZHAO Jiaying, XIN Yue, SONG Xiaoxiao, NIE Shaoping, YIN Junyi. Isolation, Purification and Structural Characterization of Polysaccharides from Chickpea [J]. FOOD SCIENCE, 2023, 44(8): 40-45. |
[5] | ZHANG Xiaodi, DONG Ye, ZHANG Yiqi, DAI Zhiyuan. Antifreeze Activity of Surimi By-product Protein Hydrolysate and Its Cryoprotective Effect and Mechanism on Streptococcus thermophilus [J]. FOOD SCIENCE, 2023, 44(7): 39-47. |
[6] | LING Zhizhou, ZENG Rong, FAN Qian, WU Runsong, LI Zhenyu, CHEN Xiangdong, SUN Dongmei, LUO Wenhui. Kudingcha (Ligustrum robustum (Roxb.) Blume): Structural Characteristics of Constituents, Bioactivities and Action Mechanisms, and Quality Control [J]. FOOD SCIENCE, 2023, 44(7): 394-403. |
[7] | CHEN Nan, GAO Haoxiang, HE Qiang, SUN Qun, ZENG Weicai. Loading, Activity Protection and Sustained-Release Effect of Wheat Starch on Ligustrum robustum (Rxob.) Blume Extract [J]. FOOD SCIENCE, 2023, 44(6): 1-8. |
[8] | XU Yaqin, SHAO Chuntian, GENG Ying, ZHENG Xiuwen, WANG Rujuan, YANG Yu. Physicochemical Properties, Structural Characterization and Protective Effect on Erythrocyte Oxidative Damage of Selenized Lonicera caerulea L. Polysaccharide [J]. FOOD SCIENCE, 2023, 44(6): 17-24. |
[9] | LU Ying, LEI Ningyu, SONG Xiaoxiao, Cui Steve W., YIN Junyi. Comparison of Structural Characteristics and Physicochemical Properties of Legume Starches from Four Minor Species [J]. FOOD SCIENCE, 2023, 44(6): 34-40. |
[10] | YANG Shuo, TANG Zongxin, DUAN Bofan, CHEN Yuhan, GUO Huanxin, MENG Xiangchen. Progress in Understanding the Action Mechanism of Bifidobacterium and Its Preparations in Inflammatory Bowel Disease [J]. FOOD SCIENCE, 2023, 44(5): 275-281. |
[11] | REN Junhe, ZENG Ping, CHEN Sirui, YI Lanhua. Inhibitory Effect of Antimicrobial Peptide zp37 on Listeria monocytogenes in Fruit Juice and Its Action Mechanism [J]. FOOD SCIENCE, 2023, 44(5): 29-37. |
[12] | JIANG Xin, JIANG Wei, XIE Sankuan, XUE Jie, JIA Fuchen. Influence of Highland Barley Varieties on the Nutritional and Sensory Quality of Highland Barley Wine [J]. FOOD SCIENCE, 2023, 44(5): 38-44. |
[13] | XIE Jianhua, GUO Xiaomei, YUAN Lanlan, YU Qiang, CHEN Yi, SHEN Mingyue. Mechanism of Action of Sterols in Reducing Intracellular Cholesterol in Hypercholesterolemic HepG2 Cells [J]. FOOD SCIENCE, 2023, 44(5): 68-74. |
[14] | WU Liangwen, ZHANG Hu, WU Tong, CHEN Ning. Research Progress on the Regulation of Resveratrol on Alzheimer’s Disease [J]. FOOD SCIENCE, 2023, 44(3): 237-245. |
[15] | FAN Guangqi, WANG Juntong, LI Dan, CUI Suping, LI Jing, ZHENG Xiqun. Effect of Protamex Hydrolysis on Foaming Properties and Structural Properties of Corn Glutelin [J]. FOOD SCIENCE, 2023, 44(24): 41-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||