FOOD SCIENCE ›› 2018, Vol. 39 ›› Issue (2): 281-286.doi: 10.7506/spkx1002-6630-201802044

• Safety Detection • Previous Articles     Next Articles

Prediction Model for Typical Alcohols in Base Liquor Based on Near Infrared Spectroscopy

LIU Jianxue1,2, YANG Guodi1, HAN Sihai1,2, LI Xuan1,2, LI Peiyan1,2, XU Baocheng1,2   

  1. (1. College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China;2. Henan Engineering Research Center of Food Material, Luoyang 471023, China)
  • Online:2018-01-25 Published:2018-01-05

Abstract: In this paper, the contents of n-propanol, n-butanol, amyl alcohol and isoamyl alcohol in base liquor were determined by gas chromatography and used as chemical values for the establishment of calibration and validation?sets for a rapid predictive model based on near infrared spectroscopy (NIR) to measure typical alcohols in base liquor. The model was developed using partial least squares (PLS) regression with internal cross validation and optimized. The optimal spectral pretreatment method and the optimal spectral region were determined. The coefficients of determination (R2) between the actual and the NIR predicted values of n-propanol, n-butanol, amyl alcohol and isoamyl alcohol for the calibration set were 0.952, 0.981, 0.963 and 0.981, and the root mean square error of cross-validation (RMSECV) were 0.27, 0.49, 0.101 and 0.67 mg/100 mL, respectively; the R2 values for the validation set were 0.947, 0.980, 0.928 and 0.952, and RMSEPs were 0.40, 0.81, 0.49 and 1.35 mg/100 mL, respectively. Results showed that the predictive model exhibited good accuracy, stability and prediction performance and could provide a new approach for the analysis of alcohols in base liquor.

Key words: near infrared spectroscopy, base liquor, typical alcohols, partial least squares

CLC Number: