食品科学 ›› 2009, Vol. 30 ›› Issue (4 ): 243-246.doi: 10.7506/spkx1002-6630-200904054

• 分析检测 • 上一篇    下一篇

BP 神经网络在大豆油酸价近红外光谱检测中的应用

王立琦   

  1. 哈尔滨商业大学计算机与信息工程学院
  • 收稿日期:2008-12-15 出版日期:2009-02-15 发布日期:2010-12-29
  • 通讯作者: 王立琦
  • 基金资助:

    哈尔滨市青年科技创新人才研究基金项目(2008RFQXN071)

Application of BP Neural Network in Detecting Acid Value of Oil Using Near Infrared Spectrum

WANG Li-qi   

  1. College of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
  • Received:2008-12-15 Online:2009-02-15 Published:2010-12-29
  • Contact: WANG Li-qi

摘要:

对于大豆四级油,采用BP 神经网络对其近红外光谱数据建模,对系统的结构及参数选取进行了分析,对样本训练集的设计和网络输入端的主因子方面进行了处理。对于其他的多变量建模方法,分析了其对近红外光谱有用信息的提取作用。结果显示:多元线性回归、主成分回归和偏最小二乘法对大豆四级油酸价预测的标准偏差分别为0.1472%、0.1801% 和0.1576%,BP 神经网络的预测标准偏差为0.1387%。

关键词: 油脂酸价, 近红外光谱, BP 神经网络, 标准偏差, 最小二乘法

Abstract:

For the fourth degree of soybean oil, a BP neural network was introduced to construct model for its near-infrared spectral data. The structure and parameters of the neural network were analyzed, and the structure design of samples training aggregation and primary factor of network input were thoroughly investigated. With regard to other multivariable modeling methods, extraction effects of useful information about near infrared spectrum were analyzed. For acid value prediction standard deviation of the fourth degree of soybean oil, the results of multivariable linear regression, primary components regression and partial least square are 0.1472%, 0.1801% and 0.1576% respectively, whereas the result of BP neural network is 0.1387%.

Key words: acid value of oil, near infrared spectrum, BP neural network, standard deviation, least square method

中图分类号: