食品科学 ›› 2018, Vol. 39 ›› Issue (6): 194-199.doi: 10.7506/spkx1002-6630-201806031
何嘉琳,乔春燕,李冬冬,张海红*,邓鸿,单启梅,高坤,马瑞
HE Jialin, QIAO Chunyan, LI Dongdong, ZHANG Haihong*, DENG Hong, SHAN Qimei, GAO Kun, MA Rui
摘要: 为探究基于高光谱成像技术预测灵武长枣VC含量的可行性并寻找最佳预测模型。采集100?个长枣样本在波长400~1?000?nm处的高光谱图像,对光谱数据进行预处理;应用遗传算法(genetic algorithm,GA)、连续投影算法(successive projection algorithm,SPA)和竞争性正自适应加权(competitive adaptive reweighted sampling,CARS)算法对原始光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘(partial least squares regression,PLS)和最小二乘支持向量机(least squares support vector machine,LSSVM)VC含量预测模型。结果表明,采用标准正态变换预处理算法效果最优,其PLS模型的交叉验证相关系数为0.839?5,交叉验证均方根误差为16.248?2;利用GA、SPA和CARS从全光谱的125?个波长中分别选取出12、5?个和26?个特征波长;基于CARS建立的PLS模型效果最优,其Rc、Rp、校正均方根误差、预测均方根误差分别为0.896?2、0.889?2、10.746?2%、12.145?3%。研究结果表明基于高光谱成像技术对灵武长枣VC含量的无损检测是可行的。
中图分类号: