食品科学 ›› 2019, Vol. 40 ›› Issue (10): 285-291.doi: 10.7506/spkx1002-6630-20180508-119
程丽娟1,刘贵珊1,何建国1,*,杨晓玉1,万国玲1,张 翀1,马 超2
CHENG Lijuan1, LIU Guishan1, HE Jianguo1,*, YANG Xiaoyu1, WAN Guoling1, ZHANG Chong1, MA Chao2
摘要: 利用高效液相色谱法检测蔗糖含量,同时运用高光谱成像技术结合化学计量方法建立蔗糖预测模型;通过竞争性自适应加权(competitive adaptive reweighted sampling,CARS)算法、连续投影算法(successive projection algorithm,SPA)和无信息消除变量(uninformative variable elimination,UVE)降维处理,建立特征波段和全波段的主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)和多元线性回归(multivariable linear regression,MLR)模型。结果表明,采用蒙特卡洛方法剔除异常样本后,相关系数由0.611增大到0.846;正交信号校正法预处理效果最佳,RC和RP分别为0.853和0.794;利用SPA、UVE、CARS、CARS+SPA和CARS+UVE五种方法提取了5、21、17、10、18 个特征变量,其中CARS-PCR模型最好,校正集、预测集的相关系数为0.861、0.843,校正集、预测集的均方根误差为0.013 mg/g和0.014 mg/g。综上,高光谱成像技术可以实现长枣蔗糖含量的预测,为更深一步探讨枣的内部品质提供参考。
中图分类号: