食品科学 ›› 2021, Vol. 42 ›› Issue (23): 57-63.doi: 10.7506/spkx1002-6630-20210427-378

• 基础研究 • 上一篇    下一篇

分子动力学模拟超高压结合热处理对β-乳球蛋白结构的影响

简清梅,索化夷,张喜才,苟兴能,黄业传   

  1. (1.荆楚理工学院生物工程学院,湖北?荆门 448000;2.西南大学食品科学学院,重庆 400715;3.西南科技大学生命科学与工程学院,四川?绵阳 621010)
  • 出版日期:2021-12-15 发布日期:2021-12-29
  • 基金资助:
    “十三五”国家重点研发计划重点专项(2018YFD0502404);四川省科技支撑计划项目(2021ZHFP0165)

Effect of Combined High Pressure and Thermal Treatment on Structure of β-Lactoglobulin Evaluated by Molecular Dynamics Simulation

JIAN Qingmei, SUO Huayi, ZAHNG Xicai, GOU Xingneng, HUANG Yechuan   

  1. (1. College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China; 2. College of Food Science, Southwest University, Chongqing 400715, China; 3. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China)
  • Online:2021-12-15 Published:2021-12-29

摘要: 本研究以β-乳球蛋白为研究对象,采用分子动力学模拟0.1、300、600 MPa的压力结合300、330 K的温度,及单独100 ℃(0.1 MPa,373.15 K)加热条件下蛋白结构均方根误差(root mean square deviation,RMSD)、均方根波动(root mean square fluctuation,RMSF)、回旋半径、氢键数量、溶剂可及表面积、体积、二级结构的变化,并用偏最小二乘回归分析温度和压力对各指标的影响规律。结果表明,与600 MPa、330 K联合处理相比,100 ℃加热能更显著地破坏蛋白结构。3 种压力结合2 种温度的模拟中,温度显著影响RMSD和α-螺旋数量,330 K的温度处理能增加蛋白的RMSD而减少α-螺旋数量;压力处理能减少蛋白的溶剂可及表面积和蛋白体积,使蛋白结构更致密;压力和温度的交互作用显著影响蛋白间氢键数量、β-折叠数量、无规卷曲数量和RMSF;300 MPa的压力能稳定加热导致的蛋白结构破坏。因此,本研究从分子动力学的角度证实了高压结合一定温度的热处理相比单独的高温(100 ℃)热处理对蛋白结构的破坏更小,是一种温和的处理方式,且压力能在一定程度上降低热处理对蛋白结构的破坏。

关键词: 高压;热处理;分子动力学;β-乳球蛋白

Abstract: To investigate the effect of combined high pressure and thermal treatments on protein molecular structure, the changes in the structural root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration, the number of hydrogen bonds, solvent accessible surface area, volume, and secondary structure of β-lactoglobulin after treatment with combinations of different pressures (0.1, 300, and 600 MPa) and temperatures (300 and 330 K) or thermal treatment alone at 100 ℃ (0.1 MPa and 373.15 K) were evaluated using molecular dynamics simulation, and the effects of pressure and temperature on the above structural indicators were analyzed by partial least squares regression (PLSR). The results showed that thermal treatment at 100 ℃ damaged the protein’s structure more severely than the combined treatment of 600 MPa and 330 K. For the combined treatments, temperature affected the RMSD and the number of α-helix significantly, which respectively increased and decreased at 330 K. Pressure treatment could reduce the solvent accessible surface area and volume of the protein, thus making its structure more compact. The number of hydrogen bonds between proteins, β-sheet, random coil, and RMSF were significantly affected by the interaction between pressure and temperature. The pressure treatment at 300 MPa could stabilize structural damage caused by heat treatment to the protein. Therefore, molecular dynamics simulation confirmed that high pressure combined with heat treatment at a certain temperature was milder, causing less structural damage to proteins compared with thermal sterilization at 100 ℃.

Key words: high pressure; thermal treatment; molecular dynamics; β-lactoglobulin

中图分类号: