食品科学 ›› 2025, Vol. 46 ›› Issue (17): 283-257.doi: 10.7506/spkx1002-6630-20250214-046

• 安全检测 • 上一篇    

近红外光谱测定黄水酸度的iPLS-iNSGA-III联合特征筛选方法

张贵宇,向星睿,张磊,王怡博,严俊,张云龙   

  1. (四川轻化工大学 人工智能四川省重点实验室,四川?宜宾 644005)
  • 发布日期:2025-08-18
  • 基金资助:
    四川省科技计划项目(2022YFS0554);酿酒生物技术及应用四川省重点实验室开放课题(NJ2022-06); 劲酒产学研合作项目(HX2021041);四川轻化工大学“652”科研创新团队计划资助项目(SUSE652B005); 中国轻工业酿酒生物技术及智能制造重点实验室开放基金项目(2023-01);五粮液产学研合作项目(CXY2022ZR007)

Feature Selection Using iPLS Combined with iNSGA-III for Near-Infrared Spectroscopic Determination of the Acidity of Huangshui, a By-product of Chinese Baijiu Production

ZHANG Guiyu, XIANG Xingrui, ZHANG Lei, WANG Yibo, YAN Jun, ZHANG Yunlong   

  1. (Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin 644005, China)
  • Published:2025-08-18

摘要: 针对传统化学方法测定黄水酸度存在费时费力的困境,利用近红外光谱技术和偏最小二乘回归(partial least squares regression,PLSR)算法实现发酵过程黄水酸度的快速无损检测。采用Savitzky-Golay卷积平滑对黄水原始光谱进行预处理削弱噪声影响后,为简化模型和提高预测性能,采用波段和波点筛选方法联合筛选黄水光谱特征波数。先通过区间偏最小二乘(interval partial least squares,iPLS)、联合区间偏最小二乘、反向区间偏最小二乘3 种波段筛选方法对黄水酸度特征区间进行初步定位,然后引入多目标优化思想,使用基于混沌初始化和自适应变异算子改进的非支配排序遗传算法III(improved non-dominated sorting genetic algorithm III,iNSGA-III)进行二次波点筛选。结果表明,基于iPLS-iNSGA-III筛选的70 个特征波数的建立的PLSR模型对黄水酸度预测效果最佳,相较于原始全光谱建模,决定系数R2p从0.757 6提升到0.930 9,预测均方根误差从0.825 0 mmol/100 g降低到0.439 4 mmol/100 g。该研究为白酒发酵副产物黄水酸度的快速、无损检测提供理论参考。

关键词: 黄水;酸度;近红外光谱;特征筛选;偏最小二乘回归;非支配排序遗传算法

Abstract: To address the inefficiency and complexity of traditional chemical methods for measuring the acidity of Huangshui (HS), this study proposed a rapid and non-destructive detection approach using near-infrared (NIR) spectroscopy combined with partial least squares regression (PLSR). The raw spectra were preprocessed by Savitzky-Golay convolution smoothing to reduce noise interference. To simplify the model and enhance the predictive performance, a hybrid feature selection strategy integrating spectral band selection and wavelength optimization was developed. First, interval partial least squares (iPLS), synergy interval partial least squares (SiPLS), and backward interval partial least squares (BiPLS) were employed to preliminarily identify characteristic bands related to acidity. Subsequently, a multi-objective optimization framework was introduced, incorporating an improved non-dominated sorting genetic algorithm III (iNSGA-III) with chaotic initialization and adaptive mutation operators for secondary wavelength refinement. Results demonstrated that the PLSR model based on 70 optimal wavelengths selected by iPLS combined with iNSGA-III had the best predictive performance with higher coefficient of determination of prediction (R2p) and lower root mean square error of prediction (RMSEP) of 0.930 9 and 0.439 4 mmol/100 g compared to 0.757 6 and 0.825 0 mmol/100 g for the full spectral model, respectively. This study provides a theoretical foundation for rapid, non-destructive monitoring of HS acidity during baijiu fermentation.

Key words: Huangshui; acidity; near-infrared spectroscopy; feature selection; partial least squares regression; non-dominated sorting genetic algorithm

中图分类号: