食品科学 ›› 2025, Vol. 46 ›› Issue (20): 258-267.doi: 10.7506/spkx1002-6630-20250321-174

• 成分分析 • 上一篇    下一篇

不同杀青工艺的八角茴香感官品质与代谢组学关联分析

农桂龙,陈翠粉,黄远梅,黄清泉,周改莲   

  1. (1.广西中医药大学药学院,广西 南宁 530200;2.广西壮族自治区药品检验研究院,广西 南宁 530021)
  • 出版日期:2025-10-25 发布日期:2025-09-17
  • 基金资助:
    广西科技重大专项项目(桂科AA22096029); 广西壮族自治区高校黄大年式教师团队“中药学传承创新教师团队”项目(桂教教师[2023]31号); 广西中医药大学岐黄工程高层次人才团队培育项目(202404)

Correlation Analysis between Color and Metabolites of Illicium verum (Star Anise) Treated with Different Blanching Processes

NONG Guilong, CHEN Cuifen, HUANG Yuanmei, HUANG Qingquan, ZHOU Gailian   

  1. (1. School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; 2. Guangxi Institute for Drug Control, Nanning 530021, China)
  • Online:2025-10-25 Published:2025-09-17

摘要: 针对八角茴香传统加工工艺效率低、质量不稳定等问题,本研究系统探究不同杀青工艺对其“感官-代谢物”关联网络的影响,解析感官与特征代谢物的相关性。采用电子鼻、气相色谱-质谱等多种技术分析不同杀青工艺(沸水杀青、蒸汽杀青、微波杀青及每种杀青方式结合“发汗”处理)对八角茴香气味、色度的影响,并进行非靶向挥发性代谢组分析及莽草酸、总酚、总黄酮定量检测。结果表明,6 种杀青工艺共鉴定出69 种挥发性成分,基于正交偏最小二乘判别分析,以变量投影重要性>1为阈值,筛选出能够有效区分不同工艺的差异挥发性成分24 种。特征性成分反式茴香脑((83.93±8.33)%)、茴香醛((1.55±0.45)%)在微波杀青-发汗工艺中的相对含量最高。传统的沸水杀青工艺能够有效保留莽草酸((90.35±0.84)mg/g)及总酚((68.00±4.10)mg/g),以及维持挥发性代谢物种类(48 种)的多样性。微波杀青工艺八角茴香的总黄酮含量较传统沸水杀青工艺提升了57.8%,但其挥发性代谢物种类较少(17 种)。相关性网络分析显示,L*、b*与反式茴香脑、茴香醛、草蒿脑、总酚、莽草酸呈显著正相关(P<0.05),a*与总黄酮呈显著正相关(P<0.05)。通过分析各工艺样品的颜色与气味发现,微波杀青与蒸汽杀青方式的八角符合大红八角的标准。微波杀青优化了色泽与风味,而沸水杀青更利于活性成分保留。色度L*、a*、b*可作为工艺优化的评价指标,为定向生产高活性成分或优质感官特性的八角产品提供参考依据。

关键词: 八角茴香;杀青;色差仪;电子鼻;气相色谱-质谱法;代谢组学;反式茴香脑;莽草酸;总酚

Abstract: In response to the problems of low efficiency and unstable quality in the traditional processing of star anise, this study systematically explored the impact of different blanching techniques on the “color-metabolite” correlation network of star anise and analyzed the correlation between color parameters and characteristic metabolites. An electronic nose and gas chromatography-mass spectrometry (GC-MS) were used to analyze the effects of six blanching techniques (boiling water, steam, microwave blanching alone and combined with sweating) on the odor and color of star anise. Non-targeted GC-MS-based metabolomics was used for analysis of volatile metabolites, and the non-volatile metabolites shikimic acid, total phenols, and total flavonoids were quantitatively detected. The results showed that a total of 69 volatile metabolites were identified across the six blanched samples. Using variable importance in projection (VIP) value > 1 as the threshold, orthogonal partial least squares discriminant analysis (OPLS-DA) identified 24 differential metabolites to effectively distinguish star anise treated with different blanching techniques. The relative contents of the characteristic components trans-anethole ((83.93 ± 8.33)%) and anisaldehyde ((1.55 ± 0.45)%) were the highest in the sample treated with microwave blanching combined with sweating. Traditional boiling water blanching effectively retained shikimic acid ((90.35 ± 0.84) mg/g) and total phenols ((68.00 ± 4.10) mg/g), and maintained the diversity of volatile metabolites (48). The total flavonoid content in microwave-treated star anise was 57.8% higher than that star anise subjected to traditional boiling water blanching, but the number of volatile metabolites was smaller (17). Pearson’s correlation analysis showed that the color parameters L* and b* were positively correlated with trans-anethole, anisaldehyde, anisole, total phenols, and shikimic acid (P < 0.05), and a* was positively correlated with total flavonoids (P < 0.05). In terms of color and odor, star anise processed by microwave blanching and steam blanching met the standards for da-hong star anise. Microwave blanching optimized the color and flavor, while boiling water blanching was more conducive to the retention of active components. The color values L*, a*, and b* can be used as indicators for process optimization, providing a basis for the targeted production of star anise products with highly active components or superior sensory characteristics.

Key words: star anise; blanching; colorimeter; electronic nose; gas chromatography-mass spectrometry; metabolomics; trans-anethole; shikimic acid; total phenols

中图分类号: