食品科学 ›› 2025, Vol. 46 ›› Issue (24): 106-114.doi: 10.7506/spkx1002-6630-20250530-209

• 基础研究 • 上一篇    

湿热磷酸化提升乳清蛋白热稳定性的作用与机制

董暄,路茹青,逄晓阳,吕加平,于景华,王筠钠,李红娟,张书文   

  1. (1.天津科技大学食品科学与工程学院,天津 300457;2.中国农业科学院农产品加工研究所,北京 100193)
  • 发布日期:2025-12-26
  • 基金资助:
    中国乳制品工业协会乳业科技创新基金—全优专项;云南省重大专项(202402AE090033); 克拉玛依市重点研发计划项目(2024zdyf0007);国家奶牛产业技术体系项目(CARS-36)

Effect and Mechanism of Moist-Heat Phosphorylation on Improving the Thermal Stability of Whey Protein

DONG Xuan, LU Ruqing, PANG Xiaoyang, LÜ Jiaping, YU Jinghua, WANG Yunna, LI Hongjuan, ZHANG Shuwen   

  1. (1. College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; 2. Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China)
  • Published:2025-12-26

摘要: 本研究以乳清分离蛋白(WPI90)为原料,通过在不同温度和pH值条件下添加三聚磷酸钠(sodium tripolyphosphate,STPP)、磷酸二氢钠(sodium hydrogen phosphate,SHP)、磷酸氢二钠(dibasic sodium phosphate,DSP)、六偏磷酸钠(sodium hexametaphosphate,SHMP)、焦磷酸钠(tetrasodium syrophosphate decahydrate,SPP)磷酸盐进行湿热磷酸化改性,筛选出耐热性好的磷酸化蛋白,对其溶解度、游离巯基含量、表面疏水性、蛋白二级结构和钠磷钙含量等指标进行测定,并对样品进行135 ℃超高温(ultra-high temperature,UHT)处理,测定UHT处理后样品的离心沉淀率、黏度、粒径等热稳定性指标,从而对磷酸化乳清蛋白的热稳定性、溶解性及蛋白结构进行分析,并将其与市售热稳定型乳清蛋白作对比。结果表明:在75 ℃条件下的磷酸化蛋白游离巯基含量增加,表面疏水性降低;添加磷酸盐后,蛋白体系中的钠和磷含量有所增加,可溶性钙和总钙含量减少,其中添加SPP和SHP的样品可溶性钙含量最低(<3 mg/g);红外光谱结果表明,磷酸化乳清蛋白的二级结构均发生了改变,磷酸化乳清蛋白的β-折叠含量整体降低,而β-转角含量增加,并且在85 ℃条件下制备的样品中无规卷曲含量有所上升。除DSP以外,其余4 种磷酸盐在pH 7.0、不同温度(75、80、85 ℃)条件下均提高了乳清蛋白的热稳定性,使高浓度乳清蛋白在138 ℃热处理后不絮凝;添加SHMP制备得到的磷酸化蛋白在UHT后具有较低的离心沉淀率和表观黏度,整体粒径小于15 μm;除SHMP组外,在75 ℃条件下添加SPP、STPP、SHP的磷酸化乳清蛋白较WPI90溶解度都有不同程度的增加,其中在75 ℃和80 ℃条件下SPP组的溶解性最好。综上所述,本研究明确了通过湿热磷酸化可以改变乳清蛋白的结构与性能以及蛋白体系中的盐离子含量,在中性条件下添加SHMP进行湿热磷酸化可以显著提高乳清蛋白的热稳定性,对高浓度乳清蛋白应用于UHT加工中具有指导意义。

关键词: 乳清蛋白改性;湿热磷酸化;热稳定性?

Abstract: Sodium tripolyphosphate (STPP), sodium dihydrogen phosphate (SHP), disodium hydrogen phosphate (DSP), sodium hexametaphosphate (SHMP), and tetrasodium pyrophosphate (SPP) were employed for the moist-heat phosphorylation of whey protein isolate (WPI90) under varying temperatures and pH conditions. Phosphorylated proteins with stronger heat resistance were selected to determine their solubility, free sulfhydryl content, surface hydrophobicity, secondary structure, sodium, phosphorus, and calcium contents. Furthermore, they underwent ultra-high temperature (UHT, 135 ℃) processing followed by evaluation of their thermal stability indicators, including centrifugal precipitation rate, viscosity, and particle size as well as their solubility and structure. Commercial heat-stable whey protein was used as control. The results revealed that phosphorylation at 75 ℃ led to an increase in the content of free sulfhydryl groups and a decrease in surface hydrophobicity. The incorporation of phosphates increased the sodium and phosphorus contents while reducing both soluble and total calcium contents, with SPP and SHP resulting in the lowest soluble calcium levels (< 3 mg/g). Fourier transform infrared spectroscopy (FTIR) indicated alterations in protein secondary structure, characterized by a general decrease in β-sheet content and an increase in β-turn content. Phosphorylation at 85 ℃ increased the random coil content. All phosphates except DSP enhanced the thermal stability of whey protein at pH 7.0 and different temperatures (75, 80, and 85 ℃), preventing flocculation of whey protein after UHT treatment. The SHMP-modified protein demonstrated the lowest centrifugal precipitation rate and apparent viscosity after UHT treatment, with an overall particle size below 15 µm. Moreover, phosphorylation with SPP, STPP, and SHP at 75 ℃ improved the solubility of WPI90 to different extents, while phosphorylation with SHMP did not. For both 75 and 80 ℃, SPP phosphorylation resulted in the highest solubility of WPI90. In conclusion, this study demonstrates that moist-heat phosphorylation effectively modifies the structure and functionality of whey protein while influencing the salt ion contents in the protein system. Specifically, the addition of SHMP under neutral pH conditions significantly enhances the thermal stability of whey protein, being of guiding significance for the UHT processing of whey protein concentrate.

Key words: whey protein modification; moist-heat phosphorylation; thermal stability

中图分类号: