食品科学 ›› 2019, Vol. 40 ›› Issue (3): 208-216.doi: 10.7506/spkx1002-6630-20171010-068

• 包装贮运 • 上一篇    下一篇

混料设计优化孜然、花椒、芥子混合精油对4 种果蔬采后真菌的抑菌效果

熊李波1,2,秦?强1,胡培芳1,郭?佳1,夏泆斌1,张?忠1,*,毕?阳1,*,葛向珍1   

  1. (1.甘肃农业大学食品科学与工程学院,甘肃?兰州 730070;2.甘肃省兰州市农产品质量监督管理中心,甘肃?兰州 730030)
  • 出版日期:2019-02-15 发布日期:2019-03-05
  • 基金资助:
    国家自然科学基金地区科学基金项目(31360416);甘肃省中药材产业科技攻关项目; 甘肃省农业科技创新项目(GNCX-2012-42);甘肃省财政厅高校基本科研费项目

Optimization of Combinations of Cuminum cyminum L., Zanthoxylum bungeanum Maxim. and Brassica juncea L. Essential Oils Using Mixture Design for Higher Antifungal Effect against Postharvest Fungi in Four Fruits and Vegetables

XIONG Libo1,2, QIN Qiang1, HU Peifang1, GUO Jia1, XIA Yibin1, ZHANG Zhong1,*, BI Yang1,*, GE Xiangzhen1   

  1. (1. College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;2. Gansu Quality Supervision and Management Center for Agricultural Product, Lanzhou 730030, China)
  • Online:2019-02-15 Published:2019-03-05

摘要: 本研究用水蒸馏法提取孜然、花椒、芥子精油,并对其成分作气相色谱-质谱联用分析;采用微量稀释法,琼脂纸片扩散法测定3?种精油对4?种果蔬真菌粉红单端孢(Trichothecium roseum)、扩展青霉(Penicillium expansum)、互隔交链孢(Alternaria alternata)、硫色镰刀菌(Fusarium sulphureum)的最小抑菌浓度(minimum inhibitory concentration,MIC)、最小杀菌浓度(minimum bactericidal concentration,MBC)和菌落直径,利用单纯型增强质心混料设计数学模型拟合最佳精油混料比例,并利用响应面和方差分析混和精油抑菌效果。结果表明提取得到的孜然精油、花椒精油、芥子精油含量分别为2.29、2.52、1.12 mL/g。孜然精油主要化学成分为枯茗醛(21.89%)、β-蒎烯(20.49%)、γ-萜品烯(18.37%)、4-丙-2-环己基-1,4-二烯-1-甲醛(10.98%)、p-伞花烃(8.89%)、4-丙-2-环己基-3-烯-1-甲醛(7.95%);花椒精油主要化学成分为芳樟醇(15.05%)、双戊烯(11.79%)、乙酸芳樟酯(11.17%)、β-蒎烯(9.33%)、(-)-4-萜品醇(6.04%)、桉叶油醇(4.62%);芥子精油的主要化学成分为烯丙基异硫氰酸酯(50.97%)、4-异硫氰基-1-丁烯(44.91%)。当孜然、花椒、芥子精油混料比例分别为36.11%、19.45%、44.44%时,对4 种真菌的抑菌效果最佳,此时在统计学上存在显著性交互作用(P<0.05),具有良好的协同性;通过菌落直径大小分析得出混合精油相比于孜然精油、花椒精油单独作用具有较强的抑菌效果。该研究表明混料设计法可有效优化不同精油联合使用时的组合比,以实现较低精油用量下较好的抑菌效果,为天然抑菌剂的减量使用提供方法指导。

关键词: 混料设计, 精油, 抑菌作用, 响应面分析

Abstract: In this study, Cuminum cyminum L., Zanthoxylum bungeanum and Brassica juncea L. oils were extracted by steam distillation and their components were analyzed by gas chromatography-mass spectrometry. Using micro-dilution method and agar diffusion method, the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and colony diameter of three essential oils against Trichothecium roseum, Penicillium expansum, Alternaria alternata and Fusarium sulphureum in fruits and vegetables were determined. The enhanced simple-centroid mixture design was used to establish a mathematical model to determine the best blend ratio of essential oils for higher antifungal effect employing response surface methodology and analysis of variance. The results showed that the extraction rates of essential oils from cumin, pricklyash and mustard were 2.29, 2.52 and 1.12 mL/g, respectively. The major chemical constituents in cumin oil were sebacic aldehyde (21.89%), β-pinene (20.49%), γ-terpinene (18.37%), 3-carene-10-aldehyde (10.98%), and p-cymene (8.89%). The major chemical constituents in pricklyash were linalool (15.05%), dipentene (11.79%), linalyl acetate (11.17%), β-pinene (9.33%) and (-)-4-terpineol (6.04%), and eucalyptol (4.62%). The major chemical components in mustard oil were allyl isothiocyanate (50.97%) and 4-isothiocyanato-1-butene (44.91%). The antibacterial effect of cumin, pricklyash and mustard essential oils when blended at a ratio of 36.11:19.45:44.44 was the best against each of the four fungi with significant interaction (P < 0.05) and good synergism being observed between the three oils. The results of this study demonstrated that mixture design could be useful to determine the optimum blend ratio of different essential oils for better antimicrobial effect at lower dosage, thereby providing methodological guidance for saving the dosage of natural bacteriostatic agents when used to preserve fruits and vegetables.

Key words: mixture design, essential oil, antibacterial effect, response surface analysis

中图分类号: