食品科学 ›› 0, Vol. ›› Issue (): 0-0.
• 专题论述 • 下一篇
陈佳悦1,范蓓2,刘贵巧1,李春梅2,王凤忠3
收稿日期:
2022-11-02
修回日期:
2023-09-03
出版日期:
2023-10-15
发布日期:
2023-11-07
通讯作者:
李春梅
E-mail:lichunmei@caas.cn
作者简介:
2022-12-16
基金资助:
Received:
2022-11-02
Revised:
2023-09-03
Online:
2023-10-15
Published:
2023-11-07
摘要: 植酸广泛存在于植物性食品中,是植物籽粒中磷的主要贮存形式。近年来,由于植酸及其降解产物可螯合矿质离子并降低蛋白质可利用性等抗营养特性,其在食品中的研究越来越受到重视。本文对植酸及其降解产物低级磷酸肌醇的性质、抗营养作用、生物活性以及在食品中含量水平进行了评述,并重点探讨了其在食品中的分析测定方法,分析比较了多种检测方法的优劣,为未来植酸及其降解产物精准检测的深入研究提供借鉴,也希望为我国食品中植酸推荐摄入量制定和研究提供参考。
陈佳悦 范蓓 刘贵巧 李春梅 王凤忠. 食品中植酸及其降解产物的研究进展[J]. 食品科学, 0, (): 0-0.
MAROLT G, GRICAR E, PIHLAR B, et al. Complex Formation of Phytic Acid With Selected Monovalent and Divalent Metals [J]. Front Chem, 2020, 8: 582746. [2] WANG R, GUO S. Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety [J]. Compr Rev Food Sci Food Saf, 2021, 20(2): 2081-105. [3] WANG W, XIE Y, LIU L, et al. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective [J]. J Agric Food Chem, 2022, 70(11): 3375-90. [4] NISSAR J, AHAD T, NAIK H, et al. A review phytic acid: As antinutrient or nutraceutical [J]. Journal of Pharmacognosy Phytochemistry 2017, 6(6): 1554-60. [5] FEIZOLLAHI E, MIRMAHDI R S, ZOGHI A, et al. Review of the beneficial and anti-nutritional qualities of phytic acid, and procedures for removing it from food products [J]. Food Res Int, 2021, 143: 110284. [6] 周婷, 杨润强, 顾振新. 植物性食品原料中植酸降解代谢与调控 [J]. 核农学报, 2017, 31(3): 539-46. [7] DUONG Q H, LAPSLEY K G, PEGG R B. Inositol phosphates: health implications, methods of analysis, and occurrence in plant foods [J]. Journal of Food Bioactives, 2018, 1: 41-55. [8] ANGEL R, TAMIM N, APPLEGATE T, et al. Phytic acid chemistry: influence on phytin-phosphorus availability and phytase efficacy [J]. Journal of Applied Poultry Research, 2002, 11(4): 471-80. [9] SAMTIYA M, ALUKO R E, DHEWA T. Plant food anti-nutritional factors and their reduction strategies: an overview [J]. Food Production, Processing and Nutrition, 2020, 2(1). [10] ZHANG Y Y, STOCKMANN R, NG K, et al. Revisiting phytate-element interactions: implications for iron, zinc and calcium bioavailability, with emphasis on legumes [J]. Crit Rev Food Sci Nutr, 2020: 1-17. [11] ROUSSEAU S, KYOMUGASHO C, CELUS M, et al. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing [J]. Crit Rev Food Sci Nutr, 2020, 60(5): 826-43. [12] COULIBALY A, KOUAKOU B, CHEN J. Phytic acid in cereal grains: Structure, healthy or harmful ways to reduce phytic acid in cereal grains and their effects on nutritional quality [J]. American Journal of Plant Nutrition and Fertilization Technology, 2011, 1(1): 1-22. [13] TALEON V, GALLEGO S, OROZCO J C, et al. Retention of Zn, Fe and phytic acid in parboiled biofortified and non-biofortified rice [J]. Food Chem X, 2020, 8: 100105. [14] PERERA I, FUKUSHIMA A, ARAI M, et al. Identification of low phytic acid and high Zn bioavailable rice (Oryza sativa L.) from 69 accessions of the world rice core collection [J]. Journal of Cereal Science, 2019, 85: 206-13. [15] GABAZA M, SHUMOY H, MUCHUWETI M, et al. Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe [J]. Food Res Int, 2018, 103: 361-70. [16] VASHISHTH A, RAM S, BENIWAL V. Cereal phytases and their importance in improvement of micronutrients bioavailability [J]. 3 Biotech, 2017, 7(1): 42. [17] BURGOS V E, BINAGHI M J, DE FERRER P A R, et al. Effect of precooking on antinutritional factors and mineral bioaccessibility in kiwicha grains [J]. Journal of Cereal Science, 2018, 80: 9-15. [18] KUMAR V, SINHA A K, MAKKAR H P, et al. Dietary roles of phytate and phytase in human nutrition: A review [J]. Food Chemistry, 2010, 120: 945–59. [19] ROSA-SIBAKOV N, RE M, KARSMA A, et al. Phytic Acid Reduction by Bioprocessing as a Tool To Improve the In Vitro Digestibility of Faba Bean Protein [J]. J Agric Food Chem, 2018, 66(40): 10394-9. [20] KEMME P A, JONGBLOED A W, MROZ Z, et al. Digestibility of nutrients in growing–finishing pigs is affected by Aspergillus niger phytase, phytate and lactic acid levels: 1. Apparent ileal digestibility of amino acids [J]. Livestock Production Science, 1999, 58(2): 107-17. [21] KASPCHAK E, MAFRA L I, MAFRA M R. Effect of heating and ionic strength on the interaction of bovine serum albumin and the antinutrients tannic and phytic acids, and its influence on in vitro protein digestibility [J]. Food Chem, 2018, 252: 1-8. [22] MAROLT G, KOLAR M. Analytical Methods for Determination of Phytic Acid and Other Inositol Phosphates: A Review [J]. Molecules, 2020, 26(1). [23] RICKARD S E, THOMPSON L U. Interactions and Biological Effects of Phytic Acid [M]. Antinutrients and Phytochemicals in Food. American Chemical Society. 1997: 294-312. [24] YU S, COWIESON A, GILBERT C, et al. Interactions of phytate and myo-inositol phosphate esters (IP1-5) including IP5 isomers with dietary protein and iron and inhibition of pepsin1 [J]. Journal of Animal Science, 2012, 90(6): 1824-32. [25] HAN O, FAILLA M L, HILL A D, et al. Inositol phosphates inhibit uptake and transport of iron and zinc by a human intestinal cell line [J]. The Journal of nutrition, 1994, 124(4): 580-7. [26] SANDBERG A-S, BRUNE M, CARLSSON N-G, et al. Inositol phosphates with different numbers of phosphate groups influence iron absorption in humans [J]. The American journal of clinical nutrition, 1999, 70(2): 240-6. [27] L?NNERDAL B, SANDBERG A-S, SANDSTR?M B, et al. Inhibitory Effects of Phytic Acid and Other Inositol Phosphates on Zinc and Calcium Absorption in Suckling Rats [J]. The Journal of Nutrition, 1989, 119(2): 211-4. [28] GREINER R, KONIETZNY U. Phytase for food application [J]. Food Technology & Biotechnology, 2006, 44(2): 125-40. [29] KUMAR V, SINHA A K, MAKKAR H P S, et al. Phytate and phytase in fish nutrition [J]. Journal of Animal Physiology and Animal Nutrition, 2012, 96(3): 335-64. [30] RIMBACH G, PALLAUF J, MOEHRING J, et al. EFFECT OF DIETARY PHYTATE AND MICROBIAL PHYTASE ON MINERAL AND TRACE ELEMENT BIOAVAILABILITY-A LITERATURE REVIEW [J]. Current Topics in Nutraceutical Research, 2008, 6(3): 131-44. [31] ZAJDEL A, WILCZOK A, W?GLARZ L, et al. Phytic Acid Inhibits Lipid Peroxidation in vitro [J]. BioMed Research International, 2013, 2013: 147307. [32] RIMBACH G, PALLAUF J. Phytic acid inhibits free radical formation in vitro but does not affect liver oxidant or antioxidant status in growing rats [J]. The Journal of nutrition, 1998, 128(11): 1950-5. [33] OATWAY L, VASANTHAN T, HELM J H. Phytic acid [J]. Food Reviews International, 2001, 17(4): 419-31. [34] RAN X, LIU J, FU S, et al. Phytic Acid Maintains the Integrity of the Blood-Milk Barrier by Regulating Inflammatory Response and Intestinal Flora Structure [J]. J Agric Food Chem, 2022, 70(1): 381-91. [35] PICCOLO E, VIGNATI S, MAFFUCCI T, et al. Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway [J]. Oncogene, 2004, 23(9): 1754-65. [36] JIA Y, SUBRAMANIAN K K, ERNEUX C, et al. Inositol 1, 3, 4, 5-tetrakisphosphate negatively regulates phosphatidylinositol-3, 4, 5-trisphosphate signaling in neutrophils [J]. Immunity, 2007, 27(3): 453-67. [37] BERRIDGE M J. Inositol trisphosphate and calcium signalling mechanisms [J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2009, 1793(6): 933-40. [38] 王新坤, 仲磊, 杨润强, 等. 植物籽粒中植酸及其降解方法与产物研究进展 [J]. 食品科学, 2014, 35(3): 301-6. [39] SUN M, JAISI D P. Distribution of inositol phosphates in animal feed grains and excreta: distinctions among isomers and phosphate oxygen isotope compositions [J]. Plant and Soil, 2018, 430(1-2): 291-305. [40] FRONTELA C, GARCíA-ALONSO F J, ROS G, et al. Phytic acid and inositol phosphates in raw flours and infant cereals: The effect of processing [J]. Journal of Food Composition and Analysis, 2008, 21(4): 343-50. [41] ZHANG S, YANG W, ZHAO Q, et al. Rapid Method for Simultaneous Determination of Inositol Phosphates by IPC-ESI–MS/MS and Its Application in Nutrition and Genetic Research [J]. Chromatographia, 2017, 80(2): 275-86. [42] CHEN Q. Determination of phytic acid and inositol pentakisphosphates in foods by high-performance ion chromatography [J]. Journal of agricultural and food chemistry, 2004, 52(15): 4604-13. [43] VINCENT. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Foods and Animal Feeds [J]. Journal of AOAC International 2016, 99(3): 738-43. [44] LIU X, VILLALTA P W, STURLA S J. Simultaneous determination of inositol and inositol phosphates in complex biological matrices: quantitative ion-exchange chromatography/tandem mass spectrometry [J]. Rapid Commun Mass Spectrom, 2009, 23(5): 705-12. [45] YU S, CHEN Z, WANG Y, et al. Determination of phytic acid in wheat products by complete methyl esterification and liquid chromatography-mass spectrometry analysis [J]. J Sep Sci, 2021, 44(14): 2856-61. [46] OBERLEAS D, HARLAND B. Analytical methods for phytate [J]. 1986. [47] SIMONET B M, RIOS A, GRASES F, et al. Determination of myo-inositol phosphates in food samples by flow injection-capillary zone electrophoresis [J]. Electrophoresis, 2003, 24(12-13): 2092-8. [48] LIU T, HE L, VALIENTE M, et al. Fast determination of bioactive phytic acid and pyrophosphate in walnuts using microwave accelerated extraction [J]. Food Chem, 2017, 221: 771-5. [49] BURBANO C, MUZQUIZ M, OSAGIE A, et al. Determination of phytate and lower inositol phosphates in Spanish legumes by HPLC methodology [J]. Food chemistry, 1995, 52(3): 321-5. [50] SANDBERG A S, AHDERINNE R. HPLC method for determination of inositol tri‐, tetra‐, penta‐, and hexaphosphates in foods and intestinal contents [J]. Journal of Food Science, 1986, 51(3): 547-50. [51] SKOGLUND E, CARLSSON N-G, SANDBERG A-S. Determination of isomers of inositol mono-to hexaphosphates in selected foods and intestinal contents using high-performance ion chromatography [J]. Journal of agricultural and food chemistry, 1997, 45(2): 431-6. [52] LEHRFELD J. High-performance liquid chromatography analysis of phytic acid on a pH-stable, macroporous polymer column [J]. Cereal chemistry, 1989, 66(6): 510-5. [53] LEHRFELD J. HPLC separation and quantitation of phytic acid and some inositol phosphates in foods: problems and solutions [J]. Journal of Agricultural and Food Chemistry, 1994, 42(12): 2726-31. [54] PHILLIPPY B Q, BLAND J M. Gradient ion chromatography of inositol phosphates [J]. Analytical biochemistry, 1988, 175(1): 162-6. [55] DAWSON R, MOPPER K. A note on the losses of monosaccharides, amino sugars, and amino acids from extracts during concentration procedures [J]. Analytical Biochemistry, 1978, 84(1): 186-90. [56] 袁建, 王艳, 范哲, et al. 离子对色谱-ELSD 检测麦类中植酸的方法研究 [J]. 中国粮油学报, 2015, 30(3): 128-33. [57] 国家卫生和计划生育委员会. 食品安全国家标准 食品中植酸的测定:GB 5009.153—2016 [J]. [58] 粮食中植酸含量的测定 高效液相色谱法:NY/T 3941-2021 [J]. [59] 陆智辉, 阎君, 辛文慧, 等. 棉仁植酸含量的离子色谱测定方法研究 [J]. 棉花学报, 2015, 27(6): 561-9. [60] YU S, CAI C, WANG Y, et al. Quantification of phytic acid in baby foods by derivatization with (trimethylsilyl)diazomethane and liquid chromatography-mass spectrometry analysis [J]. Rapid Commun Mass Spectrom, 2021: e9194. [61] DOST K, TOKUL O. Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography [J]. Analytica Chimica Acta, 2006, 558(1-2): 22-7. |
[1] | 尹文俊,朱蒙蒙,陈小威,孙尚德,王永辉. 天然皂皮皂苷与大豆分离蛋白协同构建高蛋白减脂植物基蛋黄酱及其特性[J]. 食品科学, 2024, 45(9): 22-28. |
[2] | 邵瑞婷,丁学妍,姜洁. 超高效液相色谱-串联质谱法测定调节三高类保健食品中59种非法添加药物[J]. 食品科学, 2024, 45(9): 232-242. |
[3] | 尚柯,张彪,张敏,杨华雨,叶梅,段庆梓,王巍,宫亚君. 基于多酶恒温快速扩增-侧向流层析联用技术的肉制品真实性研究[J]. 食品科学, 2024, 45(8): 1-12. |
[4] | 谢莹莹,庞旭,周海泳,徐健,祁姣姣,朱剑锋,李雪玲,杨美艳,胡文锋. 后生元的作用机制及其在食品领域的应用[J]. 食品科学, 2024, 45(8): 354-363. |
[5] | 谢昀,周伟娥,许秀丽,张晶,张峰. 食品中季铵盐类消毒剂检测方法建立及北京市市售食品及膳食样品中含量分析[J]. 食品科学, 2024, 45(6): 261-270. |
[6] | 张倩,蒋玲,王启明,雷小娟,明建. 双凝胶在食品领域:从组成到应用[J]. 食品科学, 2024, 45(6): 277-284. |
[7] | 段昊,松伟,王峰,闫文杰. 类胡萝卜素类原料在缓解视觉疲劳保健食品中的应用研究进展[J]. 食品科学, 2024, 45(6): 317-325. |
[8] | 杨镕, 臧一宇, 吴鹏, 孙翠霞, 方亚鹏. 多糖类食品胶体的功能特性及其在食品加工中的应用研究进展[J]. 食品科学, 2024, 45(5): 283-292. |
[9] | 朱吟非,康淞皓,刘星宇,彭郁,李茉,倪元颖,温馨. 高新技术在天然产物及其健康食品加工中的应用[J]. 食品科学, 2024, 45(5): 335-344. |
[10] | 李涛,周立,徐园杰,袁松凯,曹艳广,郝建雄,刘俊果. 谷氨酰胺转氨酶对板栗粉面团理化特性的影响[J]. 食品科学, 2024, 45(5): 18-23. |
[11] | 袁林,梁旭娟,程瑞华,陈国刚,石训,劳菲,李雪峰,吴继红. 高静压和热预处理对真空冷冻干燥重组果蔬块品质的影响[J]. 食品科学, 2024, 45(5): 201-209. |
[12] | 刘川,李佳佳,吴雪莹,陈燕秋,石培育,宋娟,戴琴. 通过式固相萃取-超高效液相色谱-串联质谱法测定动物源性食品中30 种食源性兴奋剂[J]. 食品科学, 2024, 45(4): 289-299. |
[13] | 王芷静,陈倩茜,蔡杰. 淀粉-多酚复合膜的研究进展:从功能特性到食品包装应用[J]. 食品科学, 2024, 45(4): 336-343. |
[14] | 陈启杰,张朋,游娜,张亚增,栾鹏程,王正敏,罗永清. 基于纤维素纳米晶乳化陈皮精油的淀粉基抗菌膜的制备与性能[J]. 食品科学, 2024, 45(3): 134-141. |
[15] | 茹义博,董庆利,马悦. 抗生物黏附材料的构建及在食品领域的应用进展[J]. 食品科学, 2024, 45(3): 217-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||