Received:
2023-04-22
Revised:
2023-07-12
Online:
2023-08-29
Published:
2023-08-29
CLC Number:
[1]张伯涵.南宁市黑臭水体形成机制的研究[硕士毕业论文].南宁:广西大学,2019.[2]谢雨衡.黑臭水体形成过程及致臭物质产生条件的研究[硕士毕业论文].南宁:广西大学,2020.[3]李秋雨,刘红梅,李彦,戴幽,李慧中,刘焱.真空熟制咸鸭蛋“黑圈”产生的原因分析.现代食品科技,2021,37(09):234-241+215.[4]Rong N, Lu W, Zhang C, et al. In situ high-resolution measurement of phosphorus, iron and sulfur by diffusive gradients in thin films in sediments of black-odorous rivers in the Pearl River Delta region, South China[J]. Environmental Research, 2020, 189: 109918.[5]Zhang D, Yang H, Lan S, et al. Evolution of urban black and odorous water: The characteristics of microbial community and driving-factors[J]. Journal of Environmental Sciences, 2022, 112: 94-105.[6]Tang WZ, Shan BQ, Zhang H, Zhang WQ, Zhao Y, Ding YK, Rong N, Zhu XL. Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China. Scientific Reports, 2014, 4: 7152-7158.[7]Kachuk C, Stephen K, Doucette A. Comparison of sodium dodecyl sulfate depletion techniques for proteome analysis by mass spectrometry[J]. Journal of chromatography A, 2015, 1418: 158-166.[8]Wi?niewski J R, Zougman A, Nagaraj N, et al. Universal sample preparation method for proteome analysis[J]. Nature methods, 2009, 6(5): 359-362.[9]Gillette M A, Satpathy S, Cao S, et al. Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma[J]. Cell, 2020, 182(1): 200-225. e35.[10]于智慧.鸡蛋高密度脂蛋白对脂质代谢的影响及机制研究[博士毕业论文].武汉:华中农业大学,2019.[11]Dou H, Magnusson E, Choi J, Duan F, Nilsson F, Lee S. Study on aggregation behavior of low density lipoprotein in hen egg yolk plasma by asymmetrical flow field-flow fractionation coupled with multiple detectors. Food Chemistry, 2016, 192: 228-234.[12]蒲云辉,唐嘉陵,徐青,李玫,潘声旺.我国黑臭水体的形成机制与治理策略研究.广州化工,2020,48(24):128-130.[13]张晓维.卵黄高磷蛋白的分离纯化、结构表征及功能特性研究[博士毕业论文].武汉:华中农业大学,2014.[14]Bonifácio V D B, Pereira S A, Serpa J, et al. Cysteine metabolic circuitries: Druggable targets in cancer[J]. British journal of cancer, 2021, 124(5): 862-879.28.Lauinger L, Kaiser P. Sensing and signaling of methionine metabolism[J]. Metabolites, 2021, 11(2): 83.[15]Lauinger L, Kaiser P. Sensing and signaling of methionine metabolism[J]. Metabolites, 2021, 11(2): 83.[16]Fu L, Liu K, He J, et al. Direct proteomic mapping of cysteine persulfidation[J]. Antioxidants & redox signaling, 2020, 33(15): 1061-1076.[17]Van Bergen LA, Roos G, De Proft F. From thiol to sulfonic acid: Modeling the oxidation pathway of protein thiols by hydrogen peroxide. J. Phys. Chem. 2014, 118: 6078-6084.[18]Shang Y, Luo M, Yao F, et al. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells[J]. Cellular signalling, 2020, 72: 109633.[19]Schofield L, Lincz L F, Skelding K A. Unlikely role of glycolytic enzyme α-enolase in cancer metastasis and its potential as a prognostic biomarker[J]. Journal of Cancer Metastasis and Treatment, 2020, 6: 10.[20]Ma Q, Jiang H, Ma L, et al. The moonlighting function of glycolytic enzyme enolase-1 promotes choline phospholipid metabolism and tumor cell proliferation[J]. Proceedings of the National Academy of Sciences, 2023, 120(15): e2209435120.[21]Sariyer E, Kocer S, Danis O, et al. In vitro inhibition studies of coumarin derivatives on Bos taurus enolase and elucidating their interaction by molecular docking, molecular dynamics simulations and MMGB (PB) SA binding energy calculation[J]. Bioorganic Chemistry, 2021, 110: 104796.[22]Zhang Z H, Li S, Yan Y, et al. A novel fast-responsive fluorescent probe based on 1, 3, 5-triazine for endogenous H 2 S detection with large Stokes shift and its application in cell imaging[J]. New Journal of Chemistry, 2021, 45(22): 9756-9760.[23]Zheng T, Qian C. Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase[J]. Process Biochemistry, 2020, 91: 271-281.[24]Arikado E, Ishihara H, Ehara T, Shibata C, Saito H, Kakegawa T, Igarashi K, Kobayashi H. Enzyme level of enterococcal F1Fo-ATPase is regulated by pH at the step of assembly. European Journal of Biochemistry, 1999, 259(1-2): 262-268.[25]Morita RY. Psychrophilic bacteria. Bacteriological reviews, 1975, 39(2): 144.[26]Noori R, karbassi A, Khakpour A, Shahbazbegian M, Badam HMK, Vesali-Naseh M. Chemometric Analysis of Surface Water Quality Data: Case Study of the Gorganrud River Basin, Iran. Environmental Modeling &Assessment, 2012, 17(4): 411-420.[27]徐瑶瑶.寡养单胞菌对水体致黑S2-的氧化特性及其主要代谢途径研究[硕士毕业论文].合肥:合肥工业大学,2019.[28]Si K, Gong T, Ding S, et al. Binding mechanism and bioavailability of a novel phosvitin phosphopeptide (Glu-Asp-Asp-pSer-pSer) calcium complex[J]. Food Chemistry, 2023, 404: 134567.[29]Liu W, Tang C, Cai Z, et al. The effectiveness of polypeptides from phosvitin and eggshell membrane in enhancing the bioavailability of eggshell powder calcium and its accumulation in bones[J]. Food Bioscience, 2023, 51: 102257.[30]Tam E, Sung H K, Lam N H, et al. Role of Mitochondrial Iron Overload in Mediating Cell Death in H9c2 Cells[J]. Cells, 2023, 12(1): 118.[31]Ganz T, Nemeth E. Pathogenic Mechanisms in Thalassemia II: Iron Overload[J]. Hematology/Oncology Clinics, 2023, 37(2): 353-363.[32]Zheng H, Yang F, Deng K, et al. Relationship between iron overload caused by abnormal hepcidin expression and liver disease: A review[J]. Medicine, 2023, 102(11): e33225-e33225.[33]Stockwell BR, José Pedro Friedmann Angeli, Hülya Bayir. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2): 273-285.[34]Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell. 2019, 35(6): 830-849.[35Zheng T, Li L, Chai F, et al. Factors impacting the performance and microbial populations of three biofilters for co-treatment of H2S and NH3 in a domestic waste landfill site[J]. Process Safety and Environmental Protection, 2021, 149: 410-421.[36]Turell L, Zeida A, Trujillo M. Mechanisms and consequences of protein cysteine oxidation: the role of the initial short-lived intermediates[J]. Essays in Biochemistry, 2020, 64(1): 55-66. |
[1] | ZHUANG Jiao, JU Ning, ZHU Xiaoxue, LI Yafeng, DING Yuhong, GAO Yan, CHEN Yanhui, QI Jin, YANG Bingkun. Characterization and Analysis of Differentially Expressed Proteins in Raw Milk during Cold Storage [J]. FOOD SCIENCE, 2024, 45(5): 225-232. |
[2] | CHEN Mengying, GONG Lan, HE Tao, ZHU Lei, LUAN Fengting, DOU Weisheng, SHAO Xuemei,FANG Xiaomin, YOU Zhaorong, WEI Ruicheng, WANG Ran. Analysis of Characteristic Quality Indexes of Gaoyou Duck Eggs [J]. FOOD SCIENCE, 2024, 45(2): 240-247. |
[3] | Zhang-Rui ZHANGRUI. Identification of cysteine oxidation sites at different storage temperatures and the effect on the tenderness of Tan lamb [J]. FOOD SCIENCE, 2024, 45(10): 0-0. |
[4] | WENG Liping, ZHANG Le, LIU Junbo, XIAO Wenfei, WANG Qian, ZOU Ligen. Label-free Quantitative Differential Proteomic Analysis of Large Yellow Croaker Cultured under Different Aquaculture Modes [J]. FOOD SCIENCE, 2023, 44(8): 137-142. |
[5] | TIAN Wenqiang, WANG Qiaohua, XU Buyun, CHEN Yuanzhe, XIAO Shijie, FAN Wei, LIN Weiguo, LIU Shiwei. Non-Destructive Detection of Physical and Chemical Indicators of Salted Duck Eggs during Salting Using Near-Infrared Spectroscopy [J]. FOOD SCIENCE, 2023, 44(2): 319-326. |
[6] | SU Yahang, HOU Zhongyu, KOU Xiaodi, LIU Shuang, ZHU Chenglin, CHEN Juan, DAO Xiaofang, TANG Junni. Isolation, Identification and Biological Characteristics Analysis of a New Proteus Phage [J]. FOOD SCIENCE, 2023, 44(18): 214-222. |
[7] | SUN Jing, YANG Xue, PENG Xu, LU Lizhi, ZENG Tao, SHAN Yumeng, ZHOU Bin, LIANG Zhenhua, JIA Ming, SHEN Jie, DU Jinping. Duck Eggs and Black-Yolked Salted Duck Eggs: Bacterial Diversity on Eggshells and Gene Function Prediction Using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) [J]. FOOD SCIENCE, 2023, 44(14): 116-124. |
[8] | LU Changli, XIONG Xiangyuan, CHEN Lili, REN Youhua, LIU Yan, ZHANG Renjie. Relationship between Non-Pathogenic Bacteria from Eggs of Healthy Laying Ducks and Flora Structure in the Genital Tract and Cecum [J]. FOOD SCIENCE, 2023, 44(14): 169-180. |
[9] | LU Changli, XIONG Xiangyuan, GONG Huike, REN Youhua, CHEN Lili, LIU Yan. Diversity and Seasonal Variation of Bacteria Contaminating Fresh Duck Egg Surface [J]. FOOD SCIENCE, 2021, 42(18): 306-313. |
[10] | YU Honghong, WU Mingying, WANG Qingling, DONG Juan, LU Shiling. Effect of Thyme Essential Oil Microcapsules on Mechanism of Histamine Production by Morganella morganii and Proteus bacillus [J]. FOOD SCIENCE, 2020, 41(19): 9-16. |
[11] | MA Congcong, ZHANG Jiukai, LU Zheng, HAN Jianxun, XING Ranran, HAO Jianxiong, CHEN Ying. A Review of Methods for Freshness Detection of Aquatic Products [J]. FOOD SCIENCE, 2020, 41(19): 334-342. |
[12] | GUO Quanyou, SHAN Ke, JIANG Chaojun, LI Baoguo. Characterization and Spoilage Potential of Specific Spoilage Organisms Isolated from Lightly Salted Large Yellow Croaker (Pseudosciaenac rocea) [J]. FOOD SCIENCE, 2020, 41(1): 24-32. |
[13] | HU Lingping, ZHANG Hongwei, ZHANG Feng, LIN Chao, XUE Changhu, ZHANG Xiaomei. Discrimination of Wild and Farmed Fenneropenaeus chinensis Using Proteomics and Chemometrics [J]. FOOD SCIENCE, 2019, 40(8): 270-274. |
[14] | FANG Fang, ZHANG Jiukai, MA Xueting, SU Min, CHEN Ying. Identification of Heterologous Species in Donkey-Hide Gelatin Based on Specific Peptides [J]. FOOD SCIENCE, 2019, 40(16): 267-273. |
[15] | ZHANG Defu, AN Hui ZHANG Jian ZHAO Yuzong ZHANG Rui LIU Xuefei YANG Lina BAI Fengling LI Chun, ZHOU Dongsheng, LI Yujin, YIN Zhe, LI Jianrong. Drug Resistance Analysis of a Multidrug-Resistant Proteus mirabilis Carrying the mcr-1 Gene Isolated from Food-Producing Animals [J]. FOOD SCIENCE, 2018, 39(14): 145-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||