佳玉 奚
Received:2023-10-27
Revised:2024-01-12
Online:2024-03-27
Published:2024-03-27
Contact:
佳玉 奚
CLC Number:
佳玉 奚. Progress in microbial fermentation conversion of flavonoids[J]. FOOD SCIENCE.
| [1] Santos-Buelga C, Feliciano A S. Flavonoids:from structure to health issues[J]. Molecules, 2017, 22(3): 477.[2]Shen N, Wang T F, Gan Q, et al. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity[J].Food Chemistry, 2022, 383:132531.[3]Navrátilová A, Ne?uta O, VancatováI, et al.C-geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics[J]. Pharmaceutical Biology, 2016, 54(8): 1398-1407.[4]赵莹, 刘津, 王长松, 等. 微生物合成黄酮类研究进展[J]. 中国生物工程杂志, 2014, 34(04): 110-117. [5]关松磊, 吴雅馨, 孙赫, 等. 微生物转化技术在中药开发中的应用进展[J]. 微生物学通报, 2018, 45(4): 900-906.[6]何文胜.微生物转化在中草药生产中的应用研究[J]. 海峡药学, 2006, (04): 191-194. [7]LEE J H, HWANG C E, SON K S, et al. Comparisons of nutritional constituents in soybeans during solid state fermentation times and screening for their glucosidase enzymes and antioxidant properties[J]. Food Chemistry, 2019, 272: 362-371.[8]XIAO Y, FAN J, CHEN Y, et al.Enhanced total phenolic and isoflavone aglycone content, antioxidant activity and DNA damage protection of soybeans processed by solid state fermentation with Rhizopus oligosporus RT-3[J]. RSC Advances, 2016, 6(35): 29741-29756.[9]周文红, 郭咪咪, 李秀娟, 等.大豆异黄酮提取及其生物转化的研究进展[J]. 粮油食品科技, 2019, 27(5): 37-42.[10]LEE D H, KIM M J, AHN J, et al. Nutrikinetics of isoflavone metabolites after fermented soybean product (Cheonggukjang) ingestion in ovariectomized mice[J]. Molecular Nutrition& Food Research, 2017, 61 (12) :1-10.[11]赵慧颖, 余诗强, 蒋林树,等. 大豆异黄酮的代谢及其对动物肠道保护机制的研究进展[J]. 动物营养学报, 2022, 34(07): 4132-4142.[12]王秀伶, 王烨. 膳食中的植物雌激素、肠道菌群与人类健康[J].世界华人消化杂志, 2016(35): 51-67.[13]Anastasia M, Thomas C, Michael G, et al. Conversion of daidzein and genistein by an anaerobic bacterium newly isolated from the mouse intestine.[J]. Applied and environmental microbiology, 2008, 74(15).[14]赵晓佳, 李易聪, 王秀伶. 大豆异黄酮微生物转化研究进展[J]. 微生物学报, 2020, 60(02): 211-226.[15]孙艳, 庄逢源. 大豆异黄酮的微生物转化[J]. 微生物学通报, 2005, (05): 147-150. [16]Kulling S E, Honig D M, Metzler M. Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. [J]. Journal of agricultural and food chemistry.[17]陈嘉序, 陈如扬, 连媛, 等. 大豆异黄酮的生物转化及功能活性研究进展[J].食品研究与开发, 2021, 42(09): 176-182.[18]Coldham N G, Sauer M J. Pharmacokinetics of [14C] genistein in the rat: gender-related differences,potential mechanisms of biological action,and implications for human health[J]. Toxicology and Applied Pharmacology, 2000, 164(2): 206-215.[19]Lee J, Oh E, Chun S, et al. Biotransformation of isoflavones by Aspergillus niger and Cunninghamella elegans[J]. Journal of the Korean Society for Applied Biological Chemistry, 2014, 57(4).[20]杜龙. 乳酸菌发酵黄浆水的发酵特性以及其对大豆异黄酮的生物转化能力研究[J]. 食品安全质量检测学报, 2022, 13(16): 5209-5217.[21]李洁, 鲁皓, 刘柳, 等. 益生菌发酵豆乳对提高结合态大豆异黄酮转化的效果[J]. 食品与发酵工业, 2022, 48(09): 91-96.[22]Mei-lin CUI, Huan-yi YANG, Guo-qing HE.灵芝菌生物转化大豆异黄酮及其产物对结直肠癌细胞HTL-9的体外凋亡诱导研究(英文)[J].Journal of Zhejiang University-Science B(Biomedicine & Biotechnology), 2017, 18(12): 1101-1112.[23]苟赟, 赵石磊, 刘石生.酶法提高豆浆中大豆异黄酮苷元浓度的工艺研究[J].现代食品科技, 2019, 35(6): 154-160, 229.[24]曾莹, 李彦, 何平. 米曲霉产大豆异黄酮糖苷酶发酵条件的研究[J].中国酿造, 2005, 24(7): 19-21.[25]上官修蕾, 顾秋亚, 余晓斌. 茯茶“金花”菌发酵豆粕转化大豆异黄酮苷元的研究[J]. 食品与发酵工业, 2021, 47(16): 141-146.[26]吴少杰, 焦豫良, 朱强, 等. 海洋拟诺卡氏菌株HY-G转化大豆异黄酮苷发酵条件的优化[J]. 食品科学, 2011, 32(07): 273-278.[27]王丽夏. 黄浆水的蛹虫草发酵及其功能活性研究[D].南京:南京农业大学, 2017.[28]SHIMADA Y, TAKAHASHI M, MIYAZAWA N, et al. Identification of two novel reductases involved in equol biosynthesis in Lactococcus strain 20-92[J]. Journal of Molecular Microbiology and Biotechnology, 2011, 21(3/4): 160-172. [29]Elghali S, Mustafa S, Amid M, et al. Bioconversion of daidzein to equol by Bifidobacterium breve 15700 and Bifidobacterium longum BB536[J]. Journal of Functional Foods, 2012, 4(4).[30]刘玉雪, 张祎昕, 王磊, 等. 重组酿酒酵母催化二氢大豆苷元生产雌马酚[J].中国生物工程杂志, 2014, 34(04): 41-45.[31]Yoshikazu S, Masayuki T, Norihiro M, et al. Identification of two novel reductases involved in equol biosynthesis in Lactococcus strain 20-92.[J]. Journal of molecular microbiology and biotechnology, 2011, 21(3-4).[32]周博, 孟建青, 王秀伶. 兔肠道大豆异黄酮还原菌株的分离鉴定及其转化特性[J]. 微生物学通报, 2014, 41(11): 2301-2309.[33]Gaya P, Peirotén á, Medina M, et al. Bifidobacterium adolescentis INIA P784: The first probiotic bacterium capable of producing enterodiol from lignan extracts[J]. Journal of Functional Foods, 2017, 29.[34]Lilian S, Ruchika M, Annett B, et al. Anaerobic C‐ring cleavage of genistein and daidzein by Eubacterium ramulus[J]. FEMS microbiology letters, 2002, 208(2).[35]Anastasia M, Michael B, Annett B. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion.[J]. Applied and environmental microbiology, 2009, 75(6).[36]徐健, 曾万祥, 王晓东, 等. 陈皮的化学成分与药理学作用研究进展[J]. 中国野生植物资源, 2022, 41(10): 72-76+106.[37]Chen X M, Tait A R, Kitts D D. Flavonoid composition of orange peel and its association with antioxidant and anti-inflammatory activities[J]. Food Chem, 2017, 218: 15-21. [38]刘龙婵, 王星宇, 李林楠, 等. 青皮与陈皮化学成分及分析方法研究进展[J].中国中药杂志, 2022, 47(11): 2866-2879.[39]傅曼琴, 陈玉婷, 吴继军, 等. 陈皮表面微生物及其转化黄酮类物质的研究进展[J]. 现代食品科技, 2022, 38(04): 282-291.[40]Lijun L, Zibin L, Zhenglong J, et al. Identification of Novel Endophytic Yeast Strains from Tangerine Peel.[J]. Current microbiology, 2019, 76(9).[41]王福. 陈皮真菌与药效物质基础变化的相关性研究[D].成都中医药大学, 2016.[42]刘丽娜. 基于微生物代谢对陈皮陈化活性物质转化机制的研究[D]. 广东海洋大学, 2019.[43]马天颖, 蔡俊. 植物乳杆菌发酵马齿苋陈皮工艺优化及发酵液抗氧化活性分析[J]. 食品研究与开发, 2023, 44(08): 143-148.[44]杨丹, 杨放晴, 燕娜娜, 等. 黑曲霉发酵对陈皮黄酮类成分及抗氧化活性的影响[J]. 食品科技, 2019, 44(12): 23-27.[45]HongCi L, ShangZhen L, Kai L, et al. In vitro human intestinal microbiota biotransformation of nobiletin using LC-MS analysis and background subtraction strategy.[J]. Journal of separation science, 2021, 44(10).[46]Meiyan W, Dan M, Peng Z, et al. Antioxidant Protection of Nobiletin, 5-Demethylnobiletin, Tangeretin, and 5-Demethyltangeretin from Citrus Peel in Saccharomyces cerevisiae.[J]. Journal of agricultural and food chemistry, 2018, 66(12). [47]Shiwei S, Denggao Z, Bo Y, et al. Biosynthesis of 6- and 7-Mono-Demethylated Nobiletins by a Newly Isolated Strain of Yeast.[J]. Journal of agricultural and food chemistry, 2022, 70(49).[48]姜钰婷, 贺超, 任田田等. 黄芩化学成分与药理作用研究进展[J]. 化工科技, 2022, 30(06): 93-100.[49]冯倩倩, 陈淼, 何嘉丽,等.黄芩素抗菌作用研究进展[J].宜春学院学报, 2022, 44(09): 21-24+51.[50]马宗敏, 刘佳, 段绪红, 等. 黄芩苷发酵转化成黄芩素和千层纸素A的黄芩内生真菌的筛选及鉴定[J].中国实验方剂学杂志, 2019, 25(09): 166-171. [51]朱琴, 林彬燕. 千层纸素A的抗肿瘤药理作用及机制研究进展[J].广东化工, 2023, 50(01): 101-102+76.[52]高腾美, 杨涵月, 常娟等.纳豆发酵对黄芩代谢转化的研究[J].中成药, 2022, 44(07): 2218-2222.[53]陈丽艳, 张迎, 金爽, 等.黄芩经侧耳菌和黑曲霉发酵后黄酮类成分的变化[J].中国实验方剂学杂志, 2011, 17(05): 63-65.[54]Xu J , Qian D W , Jiang S , et al. Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry for Rapid Determination of the Metabolites of Baicalin Produced by Human Intestinal Bacteria[J]. Analytical Letters, 2013, 46(3).[55]解立科, 田小亭, 郭小珍, 等. 黄芩素与黄芩苷微生物和肝脏代谢异同研究[J]. 中成药, 2020, 42(07): 1830-1836.[56]Zhang X M, Zhang H Y, Shen T Y, et al. Biotransformation to synthesize the methylated derivatives of baicalein using engineered Escherichia coli.[J]. Bioprocess and biosystems engineering, 2023, 46(5).[57]Zhu X J, Mao Y, Guo M M ,et al. Enhancement of anti-acne effect of Scutellaria baicalensis extract by fermentation with symbiotic fungus Penicillium decumbens[J]. Journal of Bioscience and Bioengineering, 2020.[58]马宗敏, 苗文丽, 刘佳, 等. 黄芩内生真菌发酵黄芩苷生成千层纸素A的代谢途径及转化条件研究[J]. 天然产物研究与开发, 2020, 32(11): 1928-1936.[59]Yun M Y, Won E Y , Lee J H ,et al. Bioconversion from Scutellaria baicalensis (baicalin) feremted with Leatiporus sulphureus into enriched-baicalein and anti-wrinkle effects[J]. Pharmacognosy Magazine, 2018, 14(57).[60]Xu C, Ji G E. Bioconversion of flavones during fermentation in milk containing Scutellaria baicalensis extract by Lactobacillus brevis[J]. Journal of microbiology and biotechnology, 2013, 23(10).[61]姚磊, 张敏, 王鹏娇, 等. 黄芩中黄芩苷生物转化工艺优化[J]. 中国实验方剂学杂志, 2015, 21(09): 22-24.[62]苏龙, 梁广波, 龙文英等. 黄芩苷微生物转化菌的筛选鉴定及发酵条件优化[J].湖北农业科学, 2017, 56(08): 1483-1488. [63]汪红, 高陪, 廖勇, 等. 微生物发酵转化黄芩苷生成黄芩素的研究[J]. 四川大学学报(自然科学版), 2009, 46(03): 795-798.[64]Long H N, Zhang S, Yao L, et al. [Transformation of baicalin and wogonoside through liquid fermentation with Bacillus natto].[J]. China journal of Chinese materia medica, 2015, 40(23).[65]Ku S, Zheng H , Soo P M ,et al. Optimization of β-glucuronidase activity from Lactobacillus delbrueckii Rh2 and and its use for biotransformation of baicalin and wogonoside[J]. Journal of the Korean Society for Applied Biological Chemistry, 2011, 54(2). [66]李莉, 王嘉瑞, 王晶, 等. 淫羊藿的主要化学成分及药理作用研究进展和质量标志物的预测分析[J]. 中华中医药学刊: 1-32.[67]Li H F, Guan X Y, Yang W Z, et al. Antioxidant flavonoids from epimedium wushanense [J]. Fitoterapia, 2011, 83(1): 44-48.[68]彭磊, 徐丝瑜, 武博, 等.淫羊藿中朝藿苷A、B和C的酶转化及其稀有箭藿苷的制备[J]. 食品与发酵工业: 1-8.[69]Xin X L ,Fan G J ,Sun Z ,et al. Biotransformation of major flavonoid glycosides in herb epimedii by the fungus Cunninghamella blakesleana[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 122.[70]潘雄. 平菇对淫羊藿单方及其复方药渣的生物转化研究[D].贵州大学,2018.[71]谢炎福, 押辉远, 张新雨等. 植物乳杆菌对淫羊藿黄酮苷类成分的转化作用[J]. 中国酿造, 2022, 41(12):103-109.[72]XIN X L,FAN G J,SUN Z,et al.Biotransformation of major flavonoid glycosides in herb epimedii by the fungus Cunninghamella blakesleana[J]. J Mol Catal B Enzym, 2015, 122:141-146.[73]CHENG T, YANG J,ZHANG T, et al. Optimized biotransformation of icariin into icarisideⅡ by β-glucosidase from Trichoderma viride using central composite design method[J]. Biomed Res Int, 2016, 2016: 5936947.[74]杨宇,韩冰,金凤燮,等.淫羊藿苷糖苷酶的纯化及其酶学性质的研究[J].食品与发酵工业,2009, 35(1): 31-34.[75]王亚乐. 淫羊藿黄酮苷类物理、生物转化及其机理研究[D].江苏大学,2008.[76]LYU Y B, ZENG W Z, DU G C, et al.Efficient bioconversion of epimedin C to icariin by a glycosidase from Aspergillus nidulans[J]. Bioresour Technol, 2019, 289: 121612. [77]Lin Y, Chen W W , Ding B, et al. Highly efficient bioconversion of icariin to icaritin by whole-cell catalysis[J]. Microbial Cell Factories, 2023, 22(1).[78]Su J W, Wu T, Cao S P, et al. Screening and characterization of a β-xylosidase from Bifidobacterium breve K-110 and its application in the biotransformation of the total flavonoids of epimedium to icariin with α-l-rhamnosidase[J]. Bioorganic Chemistry, 2023, 132.[79]Xie J C, Zhao J, Zhang N,et al. Efficient production of isoquercitin, icariin and icariside II by a novel thermostable α-l-rhamnosidase PodoRha from Paenibacillus odorifer with high α-1, 6-/α-1, 2- glycoside specificity.[J]. Enzyme and microbial technology, 2022, 158.[80]Han F B, Kim J H, Lee I S. Microbial transformation of icariin and its derivatives.[J]. Natural product research, 2021, 36(16).[81]Xie J C , Xu H ,Jian J C, Zhang N, et al. Characterization of a novel thermostable glucose-tolerant GH1 β-glucosidase from the hyperthermophile Ignisphaera aggregans and its application in the efficient production of baohuoside I from icariin and total epimedium flavonoids[J]. Bioorganic Chemistry, 2020, 104(prepublish). |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||