食品科学 ›› 2021, Vol. 42 ›› Issue (24): 335-340.doi: 10.7506/spkx1002-6630-20200819-250

• 安全检测 • 上一篇    

直链淀粉的傅里叶衰减全反射中红外特征光谱筛选与定量分析

王广,刘宇,夏兰欣,李伟,程超   

  1. (1.生物资源与利用湖北省重点实验室(湖北民族大学),湖北 恩施 445000;2.湖北民族大学生物科学与技术学院,湖北 恩施 445000)
  • 发布日期:2021-12-30
  • 基金资助:
    恩施州科技计划项目(D20190023;D20170042);生物资源保护与利用湖北省重点实验室开放课题(PT012018)

Feature Waveband Selection and Predictive Modelling for Quantitative Determination of Amylose by Attenuated Total Reflectance-Fourier Transform Mid-Infrared Spectroscopy

WANG Guang, LIU Yu, XIA Lanxin, LI Wei, CHENG Chao   

  1. (1. Hubei Key Laboratory of Biological Resources Protection and Utilization (Hubei Minzu University), Enshi 445000, China; 2. College of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China)
  • Published:2021-12-30

摘要: 以直链淀粉含量中红外定量预测模型为载体,利用Simca软件的主成分分析和正交偏最小二乘(orthogonal partial least squares,OPLS)解析变量筛选与直链淀粉含量的相关性,同时利用TQ Analyst软件建立直链淀粉含量预测模型,比较筛选的变量对模型解释性的差异。结果表明,利用OPLS筛选出的969~1?158?cm-1特征波段,主要对应直链淀粉的结晶区和非结晶区,同时也是α-1,4-糖苷键C—O—C伸缩振动的特征波段,以此波段的光谱进行建模效果最优,模型的预测性能较全波段、800~1?200?cm-1均得到提高,模型相关系数为0.999?8,校正集均方根误差和预测集均方根误差分别为0.587%和6.26%,相对分析误差为5.177?8,预测值和真实值相关系数为0.962?7。因此OPLS筛选的变量能实现直链淀粉中红外区大部分化学特征的解析,可增强预测模型的解析性。

关键词: 直链淀粉;傅里叶衰减全反射中红外光谱;变量筛选;正交偏最小二乘法

Abstract: In this work, in order to establish a predictive model using TQ analyst software to determine amylose content by attenuated total reflectance-Fourier transform mid-infrared (ATR FT-MIR) spectroscopy, the correlation between amylose content and the spectral variables selected by principal component analysis (PCA) and orthogonal partial least squares (OPLS) was explored and the difference in the interpretation of the selected variables for the models was compared. The results showed that the characteristic waveband selected by OPLS was 969–1 158 cm-1, mainly corresponding to the crystalline and amorphous regions of amylose, and was also the characteristic band of the C–O–C stretching vibration of α-1,4-glycosidic bonds. The prediction performance of the model developed in this region was improved compared with those based on the full-band spectra and in the region of 800–1 200 cm-1, with a correlation coefficient of 0.999 8, a root mean square error for calibration (RMSEC) of 0.587%, a root mean square error for prediction (RMSEP) of 6.26%, and a relative percent deviation (RPD) of 5.177 8. The correlation coefficient between the predicted value and the real value was 0.962 7. Therefore, the variables selected by OPLS could interpret most of the chemical characteristics in the mid-infrared region of amylose, and enhance the analytical capability of the prediction model.

Key words: amylose; attenuated total reflectance-Fourier transform mid-infrared spectroscopy; variable selection; orthogonal partial least squares

中图分类号: