食品科学

• 营养卫生 • 上一篇    下一篇

猕猴桃根多糖抗疲劳、抗氧化与单糖组分鉴定

刘祝祥1,尹 红2,肖琳莉1,唐 敏1,李加兴2,3,肖文军4,黄 诚2,*   

  1. 1.吉首大学 植物资源保护与利用湖南省高校重点实验室,湖南 吉首 416000;
    2.吉首大学食品科学研究所,湖南 吉首 416000;3.湖南省猕猴桃产业化工程技术研究中心,湖南 吉首 416000;
    4.湖南农业大学 国家植物功能成分利用工程技术研究中心,湖南 长沙 410128
  • 出版日期:2013-07-15 发布日期:2013-06-28
  • 通讯作者: 黄 诚
  • 基金资助:

    “十二五”农村领域国家科技计划项目(2011BAD10B00);
    植物资源保护与利用湖南省高校重点实验室开放基金项目(JSK200904)

Antifatigue and Antioxidant Activities and Monosaccharide Composition of Polysaccharide from Roots of Kiwifruit (Actinidia deliciosa)

LIU Zhu-xiang1,YIN Hong2,XIAO Lin-li1,TANG Min 1,LI Jia-xing2,3,XIAO Wen-jun4,HUANG Cheng2,*   

  1. 1. Key Laboratory of Plant Resources Conservation and Utilization, Jishou University, Jishou 416000, China;2. Institute of Food
    Science, Jishou University, Jishou 416000, China;3. Research Center of KiwiFruit Industrialization Engineering and Technology of
    Hunan Province, Jishou 416000, China;4. National Research Center of Engineering and Technology for Utilization of Functional
    Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
  • Online:2013-07-15 Published:2013-06-28
  • Contact: HUANG Cheng

摘要:

将小鼠随机分成对照组(生理盐水)、实验组(高、中、低剂量组给糖量分别为150、75、37.5mg/(kg·d)), 每组10只,以20mL/(kg·d)剂量给小鼠连续灌胃15d,然后测定其负重游泳时间、常压耐缺氧时间,并测定其血清 中乳酸、血清尿素氮、肝糖原和肝组织中丙二醛(MDA)含量及超氧化物歧化酶(SOD)活性。结果显示:猕猴桃根多 糖能延长小鼠常压耐缺氧时间(P<0.01);增加小鼠负重游泳时间(低剂量时P<0.05;中、高剂量时P<0.01);高剂 量组降低运动后小鼠血清乳酸(P<0.01)和血清尿素氮(P<0.01)的浓度;中、高剂量组能提高小鼠体内肝糖原的储 备量(中剂量组P<0.05;高剂量组P<0.01);高剂量组提高肝组织中SOD活性(P<0.05),中、高剂量组降低肝组织 中MDA含量(中剂量组P<0.05;高剂量组P<0.01)。该结果表明猕猴桃根多糖对小鼠具有抗疲劳和抗氧化作用。将 猕猴桃根多糖水解和乙酰化后,用气质联用仪分离和鉴定多糖单糖组分,显示猕猴桃根多糖是由核糖、阿拉伯糖、 葡萄糖和半乳糖组成的杂多糖。

关键词: 猕猴桃根多糖, 抗疲劳, 抗氧化, 单糖组分

Abstract:

This study was performed to investigae the antifatigue and antioxidant activities and monosaccharide composition
of a polysaccharide (PRK) extracted from roots of kiwifruit (Actinidia deliciosa). SPF mice were divided into control group
and three experimental groups (high-dose, moderate-dose and low-dose groups, which were established by oral administration
at 150, 75 mg/(kg·d) and 37.5 mg/(kg·d), respectively) with 10 mice in each group. All the mice were administered by gavage
with 20 mL/(kg·d) of normal saline or PRK solutions continuously for 15 d. At 30 min after the last administration, the loadedswimming
time, the contents of serum lactic acid and urea nitrogen, the contents of glycogen and MDA and the activity of SOD
in the liver were tested, and at 2 h, the survival time in hypoxic conditions under normal pressure was recorded. Compared with
the control group, PRK could prolong significantly the survival time in hypoxic conditions under normal pressure (P < 0.01) and
the loaded-swimming time in low-dose group (P < 0.05), moderate-dose and high-dose group (P < 0.01), increase the content of
liver glycogen in moderate-dose group (P < 0.05) and high-dose group (P < 0.01), and enhance the activity of liver SOD in highdose
group (P < 0.05). Moreover, PRK could decrease the contents of lactic acid and urea nitrogen in the serum after swimming
in high-dose group (P < 0.01), decrease liver MDA content the after swimming in moderate-dose group (P < 0.05) and highdose
group (P < 0.01). These results showed that PRK had anti-fatigue and anti-oxidant activiteis in mice. PRK was hydrolyzed
and acetylated into acetylated monosaccharides. The acetylated monosaccharides were isolated and identified by gas chromatographymass
spectrometry. The result indicated that PRK was heteropolysaccharide and composed of ribose, arabinose, glucose and galactose.

Key words: polysaccharide extracted from kiwifruit roots, anti-fatigue activity, antioxidant activity, monosaccharide composition

中图分类号: