食品科学 ›› 2025, Vol. 46 ›› Issue (16): 345-324.doi: 10.7506/spkx1002-6630-20250221-097

• 安全检测 • 上一篇    

高光谱成像与混合波长选择的宽度学习系统预测猪肉TVB-N含量和pH值

罗毅智,唐书奇,金青婷,丘广俊,齐海军,孟繁明,李鹏   

  1. (1.广东省农业科学院设施农业研究所,广东?广州 510640;2.农业装备技术全国重点实验室,广东?广州 510642;3.猪禽种业全国重点实验室,广东?广州 510645;4.华南农业大学工程学院,广东?广州 510642;5.华南农业大学电子工程学院,广东?广州 510642;6.广东省农业科学院动物科学院研究所,广东?广州 510645;7.阜阳师范大学计算机与信息工程学院,安徽?阜阳 236041)
  • 发布日期:2025-07-22
  • 基金资助:
    国家自然科学基金青年科学基金项目(62405066);猪禽种业全国重点实验室项目(NKY-ZQQZ-25); 广东省农业科学院科技创新战略计划项目(ZX202402); 农业装备技术全国重点实验室(华南农业大学)开放基金资助项目(NKLAET-202407)

Prediction of Pork TVB-N Content and pH Using Broad Learning System Based on Hyperspectral Imaging with Hybrid Wavelength Selection

LUO Yizhi, TANG Shuqi, JIN Qingting, QIU Guangjun, QI Haijun, MENG Fanming, LI Peng   

  1. (1. Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; 2. National Key Laboratory of Agricultural Equipment Technology, Guangzhou 510642, China; 3. National Key Laboratory of Swine and Poultry Breeding, Guangzhou 510645, China; 4. College of Engineering, South China Agricultural University, Guangzhou 510642, China; 5. College of Electronic Engineering, South China Agricultural University, Guangzhou 510642, China; 6. Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510645, China; 7. School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236041, China)
  • Published:2025-07-22

摘要: 为了实现猪肉新鲜度的快速、无损、准确检测,本研究提出一种基于高光谱成像与宽度学习系统(broad learning system,BLS)的猪肉新鲜度无损检测方法。通过将高光谱技术与BLS模型结合,预测猪肉样品总挥发性盐基氮(total volatile basic nitrogen,TVB-N)含量和pH值。通过4 种不同的预处理方法(Savitzky-Golay(SG)平滑、归一化、基线校正、标准正态变换)优化光谱数据,采用竞争自适应重加权采样(competitive adaptive reweighted sampling,CARS)、连续投影算法(successive projections algorithm,SPA)和区间变量迭代空间收缩法(interval variable iterative space shrinking approach,iVISSA)进行特征提取。结果表明,SG预处理效果最优,结合iVISSA与SPA的特征提取方法能够有效剔除冗余特征并减少不相关信息的干扰,在BLS回归模型中实现了最佳的预测性能。具体来说,在TVB-N含量的预测中,iVISSA-SPA-BLS模型达到了预测相关系数RP为0.942 2、预测均方根误差(root mean square error of prediction,RMSEP)为3.007 2、残差预测差(residual prediction deviation,RPD)为2.803 8的优异性能,pH值的预测达到了RP为0.817 3、RMSEP为0.367 9、RPD为1.716 4。该方法能够高效、无损地预测猪肉新鲜度,可为食品安全领域提供一条新的无损检测技术路线。

关键词: 猪肉新鲜度;高光谱成像技术;宽度学习系统;特征提取

Abstract: This study proposed a non-destructive and accurate method for the detection of pork freshness based on hyperspectral imaging (HSI) and broad learning system (BLS). BLS models were developed and evaluated for their ability to predict the total volatile basic nitrogen (TVB-N) content and pH in pork samples based on hyperspectral images. Four different preprocessing methods (Savitzky-Golay (SG) smoothing, normalization, baseline correction, and standard normal variate) were applied to optimize the spectral data, and feature extraction was performed using competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA), and interval variable iterative space shrinking approach (iVISSA). The results indicated that SG was the best preprocessing method, and combining iVISSA with SPA for feature extraction effectively removed redundant features and reduced interference from irrelevant information, achieving optimal prediction performance in the BLS regression models. Specifically, for TVB-N prediction, the iVISSA-SPA-BLS model exhibited excellent performance with correlation coefficient of prediction (RP) of 0.942 2, root mean square error of prediction (RMSEP) of 3.007 2, and residual prediction deviation (RPD) of 2.803 8. For pH prediction, the RP, RMSEP and RPD were 0.817 3, 0.367 9, and 1.716 4, respectively. The developed method not only enables efficient and non-destructive prediction of pork freshness, but also provides a new non-destructive approach for food safety detection.

Key words: pork freshness; hyperspectral imaging technique; broad learning system; feature extraction

中图分类号: