• Reviews • Previous Articles Next Articles
ZHANG Yu, LI Lanqi, GONG Hui, CHEN Shiguo, YE Xingqian
Online:
2016-07-15
Published:
2016-07-26
Contact:
YE Xingqian
CLC Number:
ZHANG Yu, LI Lanqi, GONG Hui, CHEN Shiguo, YE Xingqian. The Hypolipidemic Mechanism of Proanthocyanidins[J]. FOOD SCIENCE, doi: 10.7506/spkx1002-6630-201613040.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.spkx.net.cn/EN/10.7506/spkx1002-6630-201613040
[1] HE F, PAN Q H, SHI Y, et al. Biosynthesis and genetic regulation ofproanthocyanidins in plants[J]. Molecules, 2008, 13(10): 2674-2703.DOI:10.3390/molecules13102674.[2] ARON P M, KENNEDY J A. Flavan-3-ols: nature, occurrence andbiological activity[J]. Molecular Nutrition & Food Research, 2008,52(1): 79-104. DOI:10.1002/mnfr.200700137.[3] GHOSH D , SCHEEPENS A. Vascular action of polyphenols[J].Molecular Nutrition & Food Research, 2009, 53(3): 322-331.DOI:10.1002/mnfr.200800182.[4] SERRANO J, PUUPPONEN-PIMIA R, DAUER A, et al. Tannins:current knowledge of food sources, intake, bioavailability andbiological effects[J]. Molecular Nutrition & Food Research, 2009,53(Suppl 2): 310-329. DOI:10.1002/mnfr.200900039.[5] TERRA X, MONTAGUT G, BUTOS M, et al. Grape-seedprocyanidins prevent low-grade inflammation by modulatingcytokine expression in rats fed a high-fat diet[J]. Journal ofNutritional Biochemistry, 2009, 20(3): 210-218. DOI:10.1016/j.jnutbio.2008.02.005.[6] ZHAO C F, LEI D J, SONG G H, et al. Characterisation of watersolubleproanthocyanidins of Pyracantha fortuneana fruit andtheir improvement in cell bioavailable antioxidant activity ofquercetin[J]. Food Chemistry, 2015, 169: 484-491. DOI:10.1016/j.foodchem.2014.07.091.[7] FU Y, QIAO L P, CAO Y M, et al. Structural elucidation andantioxidant activities of proanthocyanidins from Chinese bayberry(Myrica rubra Sieb. et Zucc.) leaves[J]. PLoS ONE, 2014, 9(5):e96162. DOI:10.1371/journal.pone.0096162.[8] CAIMARI A, del BAS J M, CRESCENTI A, et al. Low doses ofgrape seed procyanidins reduce adiposity and improve the plasma lipidprofile in hamsters[J]. International Journal of Obesity, 2013, 37(4):576-583. DOI:10.1038/ijo.2012.75.[9] DORENKOTT M R, GRIFFIN L E, GOODRICH K M, et al.Oligomeric cocoa procyanidins possess enhanced bioactivity comparedto monomeric and polymeric cocoa procyanidins for preventing thedevelopment of obesity, insulin resistance, and impaired glucosetolerance during high-fat feeding[J]. Journal of Agricultural and FoodChemistry, 2014, 62(10): 2216-2227. DOI:10.1021/jf500333y.[10] KIMURA H, OGAWA S, SUGIYAMA A, et al. Anti-obesity effects ofhighly polymeric proanthocyanidins from seed shells of Japanese horsechestnut (Aesculus turbinata Blume)[J]. Food Research International,2011, 44(1): 121-126. DOI:10.1016/j.foodres.2010.10.052.[11] PALLARES V, FERNANDEZ-IGLESIAS A, CEDO L, et al. Grapeseed procyanidin extract reduces the endotoxic effects induced bylipopolysaccharide in rats[J]. Free Radical Biology Medicine, 2013,60: 107-114. DOI:10.1016/j.freeradbiomed.2013.02.007.[12] MONTAGUT G, ONNOCKX S, VAQUE M, et al. Oligomersof grape-seed procyanidin extract activate the insulin receptorand key targets of the insulin signaling pathway differently frominsulin[J]. Journal of Nutritional Biochemistry, 2010, 21(6): 476-481.DOI:10.1016/j.jnutbio.2009.02.003.[13] AGOUNI A, LAGRUE-LAK-HAL A H, MOSTEFAI H A, et al. Redwine polyphenols prevent metabolic and cardiovascular alterationsassociated with obesity in Zucker fatty rats (Fa/Fa)[J]. PLoS ONE,2009, 4(5): e5557. DOI:10.1371/journal.pone.0005557.[14] del BAS J M, FERNANDEZ-LARREA J, BLAY M, et al. Grapeseed procyanidins improve atherosclerotic risk index and induce liverCYP7A1 and SHP expression in healthy rats[J]. The FASEB Journal,2005, 19(3): 479-481. DOI:10.1096/fj.04-3095fje.[15] QUESADA H, del BAS J M, PAJUELO D, et al. Grape seedproanthocyanidins correct dyslipidemia associated with a high-fat dietin rats and repress genes controlling lipogenesis and VLDL assemblingin liver[J]. International Journal of Obesity, 2009, 33(9): 1007-1012.DOI:10.1038/ijo.2009.136.[16] QUESADA H, DIAZ S, PAJUELO D, et al. The lipid-lowering effectof dietary proanthocyanidins in rats involves both chylomicron-richand VLDL-rich fractions[J]. British Journal of Nutrition, 2012, 108(2):208-217. DOI:10.1017/S0007114511005472.[17] LI H, HORKE S, FORSTERMANN U, et al. Vascular oxidative stress,nitric oxide and atherosclerosis[J]. Atherosclerosis, 2014. 237(1):208-219. DOI:10.1016/j.atherosclerosis.2014.09.001.[18] H U S S A I N M M. A p r o p o s e d m o d e l f o r t h e a s s e m b l y o fchylomicrons[J]. Atherosclerosis, 2000, 148(1): 1-15. DOI:10.1016/S0021-9150(99)00397-4.[19] del BAS J M, RICKETTS M L, BAIGES I, et al. Dietary procyanidinslower triglyceride levels signaling through the nuclear receptor smallheterodimer partner[J]. Molecular Nutrition & Food Research, 2008,52(10): 1172-1181. DOI:10.1002/mnfr.200900476.[20] BLADE C L, AROLA L, SALVADO M J, Hypolipidemic effects ofproanthocyanidins and their underlying biochemical and molecularmechanisms[J]. Molecular Nutrition & Food Research, 2010, 54(1):37-59. DOI:10.1002/mnfr.200900476.[21] WANG S, DONG S, ZHANG R, et al. Effects of proanthocyanidinson porcine pancreatic lipase: conformation, activity, kinetics andthermodynamics[J]. Process Biochemistry, 2014, 49(2): 237-243.DOI:10.1016/j.procbio.2013.10.018.[22] PAL S, NAISSIDES M, MAMO J C L. Polyphenolics and fatabsorption[J]. International Journal of Obesity and Related MetabolicDisorders, 2004, 28(2): 324-326. DOI:10.1038/sj.ijo.0802577.[23] NAISSIDES M, MAMO J C L, JAMES A P, et al. The effect ofchronic consumption of red wine on cardiovascular disease risk factorsin postmenopausal women[J]. Atherosclerosis, 2006, 185(2): 438-445.DOI:10.1016/j.atherosclerosis.2005.06.027.[24] NAISSIDES M, MAMO J C L, JAMES A P, et al. The effect ofacute red wine polyphenol consumption on postprandial lipaemia inpostmenopausal women[J]. Atherosclerosis, 2004, 177(2): 401-408.DOI:10.1016/j.atherosclerosis.2004.07.025. [25] VIDAL R, HERNANDEZ-VALLEJO S, PAUQUAI T, et al. Appleprocyanidins decrease cholesterol esterification and lipoproteinsecretion in Caco-2/TC7 enterocytes[J]. The Journal of Lipid Research,2005, 46(2): 258-268. DOI:10.1194/jlr.M400209-JLR200.[26] RAMSAY R R, GANDOUR R D, van der LEIJ F R. Molecularenzymology of carnitine transfer and transport[J]. Biochimica etBiophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2001, 1546(1): 21-43. DOI:10.1016/S0167-4838(01)00147-9.[27] IKARASHI N, TODA T, OKANIWA T, et al. Anti-obesity and antidiabeticeffects of acacia polyphenol in obese diabetic KKAy micefed high-fat diet[J]. Evidence-Based Complementary and AlternativeMedicine, 2011, 2011: 952031. DOI:10.1093/ecam/nep241.[28] CASANOVA E, BASELGA-ESCUDERO L, RIBAS-LATRE A, et al.Chronic intake of proanthocyanidins and docosahexaenoic acidimproves skeletal muscle oxidative capacity in diet-obese rats[J].Journal of Nutritional Biochemistry, 2014, 25(10): 1003-1010.DOI:10.1016/j.jnutbio.2014.05.003.[29] CHEN Z Y, MA K Y, LIANG Y, et al. Role and classification ofcholesterol-lowering functional foods[J]. Journal of Functional Foods,2011, 3(2): 61-69. DOI:10.1016/j.jff.2011.02.003.[30] del BAS J M, RICKETTS M L, VAQUE M, et al. Dietary procyanidinsenhance transcriptional activity of bile acid-activated FXR in vitroand reduce triglyceridemia in vivo in a FXR-dependent manner[J].Molecular Nutrition & Food Research, 2009, 53(7): 805-814.DOI:10.1016/j.jff.2011.02.003.[31] JIAO R, ZHANG Z, YU H, et al. Hypocholesterolemic activityof grape seed proanthocyanidin is mediated by enhancement ofbile acid excretion and up-regulation of CYP7A1[J]. Journal ofNutritional Biochemistry, 2010, 21(11): 1134-1139. DOI:10.1016/j.jnutbio.2009.10.007.[32] WATANABE M, HOUTEN S M, WANG L, et al. Bile acids lowertriglyceride levels via a pathway involving FXR, SHP, and SREBP-1c[J]. Journal of Clinical Investigation, 2004, 113(10): 1408-1418.DOI:10.1172/JCI21025.[33] JIAO Y, LU Y, LI X Y, Farnesoid X receptor: a master regulator ofhepatic triglyceride and glucose homeostasis[J]. Acta Pharmacol Sin,2015, 36(1): 44-50. DOI:10.1038/aps.2014.116.[34] OSADA K, SUZUKI T, KAWAKAMI Y, et al. Dose-dependenthypocholesterolemic actions of dietary apple polyphenol in rats fedcholesterol[J]. Lipids, 2006, 41(2): 133-139. DOI:10.1007/s11745-006-5081-y.[35] AVRAMOGLU R K, BASCIANO H, ADELI K. Lipid and lipoproteindysregulation in insulin resistant states[J]. Clinica Chimica Acta, 2006,368(1/2): 1-19. DOI:10.1016/j.cca.2005.12.026.[36] STAELS B, MAES M, ZAMBON A. Fibrates and future PPAR[alpha]agonists in the treatment of cardiovascular disease[J]. Nature ClinicalPractice Cardiovascular Medicine Journal, 2008, 5(9): 542-553.DOI:10.1038/ncpcardio1278.[37] SHIMADA T, TOKUHARA D, TSUBATA M, et al. Flavangenol(pine bark extract) and its major component procyanidin B1enhance fatty acid oxidation in fat-loaded models[J]. EuropeanJournal of Pharmacology, 2012, 677(1/3): 147-153. DOI:10.1016/j.ejphar.2011.12.034.[38] van DAM A D, KOOIJMAN S, SCHILPEROORT M, et al. Regulationof brown fat by AMP-activated protein kinase[J]. Trends in MolecularMedicine, 2015, 21(9): 571-579. DOI:10.1016/j.molmed.2015.07.003.[39] CELI F S. Brown adipose tissue: when it pays to be inefficient[J].The New England Journal of Medicine, 2009, 360(15): 1553-1556.DOI:10.1056/NEJMe0900466.[40] YAMASHITA Y, OKABE M, NATSUME M, et al. Preventionmechanisms of glucose intolerance and obesity by cacao liquorprocyanidin extract in high-fat diet-fed C57BL/6 mice[J]. Archives ofBiochemistry and Biophysics, 2012, 527(2): 95-104. DOI:10.1016/j.abb.2012.03.018.[41] PAJUELO D, DIAZ S, QUESADA H, et al. Acute administration ofgrape seed proanthocyanidin extract modulates energetic metabolismin skeletal muscle and BAT mitochondria[J]. Journal of Agriculturaland Food Chemistry, 2011, 59(8): 4279-4287. DOI:10.1021/jf200322x.[42] WU Z, PUIGSERVER P, ANDERSSON U, et al. Mechanismscontrolling mitochondrial biogenesis and respiration through thethermogenic coactivator PGC-1[J]. Cell, 1999, 98(1): 115-124.DOI:10.1016/S0092-8674(00)80611-X. |
[1] | LU Mintao, REN Tingyuan, YANG Jian, LU Longfa, QIN Likang. Effect of the Essential Oil from the Ripe Fruit Pericarp of Zanthoxylum bungeanum Maxim. on Glucose Metabolism in Diabetic Mice Induced by Streptozotocin [J]. FOOD SCIENCE, 2021, 42(9): 115-122. |
[2] | YANG Zhongmin, SHEN Yihong, HUANG Xianzhi, WANG Zuwen, DING Xiaowen. Improvement Effect of Mulberry Leaf Alkaloids on Abnormal Glucose and Lipid Metabolism and Liver Injury Induced by Oxidative Stress in Mice [J]. FOOD SCIENCE, 2021, 42(7): 156-161. |
[3] | WANG Miao, ZHANG Baojie, WEN Jiajia, HU Jielun, NIE Shaoping, XIE Mingyong. Intervention Effect of Two Lactobacillus Strains on Obesity in Mice [J]. FOOD SCIENCE, 2021, 42(5): 152-159. |
[4] | LI Ling, LI Zhi, SHI Ling, LI Yaling, HE Huan, ZHANG Yalin, LU Yujia, ZHU Xuan. Inhibitory Effect and Mechanism of Ozone on the Black Spot Disease of Apricot Fruit [J]. FOOD SCIENCE, 2021, 42(5): 215-220. |
[5] | WANG Caixia, BAI Chan, XIONG Guangquan, WANG Juguang, LI Ning, ZU Xiaoyan, LI Hailan, LIAO Tao. Effect of Eugenol Anesthesia on Waterless Live Transportation of Micropterus salmoides [J]. FOOD SCIENCE, 2021, 42(5): 228-236. |
[6] | PENG Hui, GONG Di, WEI Yanan, YANG Qian, ZONG Yuanyuan, Dov PRUSKY, Edward SIONOV, BI Yang. Effects of Penicillium expansum Infection on Membrane Phospholipid Metabolism of Apple Fruit [J]. FOOD SCIENCE, 2021, 42(3): 211-218. |
[7] | LONG Junyao, ZHANG Junwei, HUANG Li, XIA Ning, TENG Jianwen, WEI Baoyao, LIAO Jiajun, ZHENG Peiying. Diversity and Cholesterol-Lowering Characteristics of Lactic Acid Bacteria in Liupao Tea [J]. FOOD SCIENCE, 2021, 42(18): 58-64. |
[8] | MA Yongqiang, HAN Ye, ZHANG Kai, WANG Xin, WANG Zhili. Effect of Sweet Corncob Polysaccharide on Glucose Metabolism in Insulin Resistant HepG2 Cells [J]. FOOD SCIENCE, 2021, 42(17): 170-176. |
[9] | LUO Hui, HE Yuwei, ZHANG Xingya, RUAN Zhentian, LUO Ruiming, LI Yalei. Changes in Postmortem Energy Metabolism of Qinchuan Cattle Meat during Chilled Storage and Its Effects on Meat Quality [J]. FOOD SCIENCE, 2021, 42(17): 201-209. |
[10] | QIU Ju, ZHU Hong, WU Weijing. Regulatory Effect of Soluble and Insoluble Dietary Fiber from Tartary Buckwheat on Glucose and Lipid Metabolism in Diabetic Mice [J]. FOOD SCIENCE, 2021, 42(15): 129-135. |
[11] | YAN Xu, WANG Fangjie, WU Zufang, WENG Peifang. Lactic Acid Bacteria-Fermented Huyou (Citrus paradisi cv. Changshanhuyou) Juice Regulates Diet-Induced Obesity in Mice [J]. FOOD SCIENCE, 2021, 42(15): 167-173. |
[12] | HUANG Honghui, GU Lijuan, LI Meilin, ZHENG Yonghua, JIN Peng. Effect of Postharvest Melatonin Treatment on Quality and Reactive Oxygen Species Metabolism in Strawberry [J]. FOOD SCIENCE, 2021, 42(15): 187-193. |
[13] | LÜ Jingyi, DING Siyang, ZHANG Junhu, XU Dongle, SUN Mingyu, ZHANG Yingzhi, GE Yonghong, LI Jianrong. Comparison of Reactive Oxygen Species (ROS) Metabolism between ‘Golden Delicious’ and ‘Fuji’ Apple Fruit after Harvest [J]. FOOD SCIENCE, 2021, 42(15): 194-199. |
[14] | JIANG Yang, ZHANG Cuiying, LI Yu, XIAO Dongguang. Effect of Flavor Substances in Alcoholic Beverages on Ethanol Metabolism in Human Body: A Review [J]. FOOD SCIENCE, 2021, 42(15): 242-250. |
[15] | JIA Lei, XIANG Jiqian, YIN Hongqing, HE Hui, HOU Tao. Progress in Bioactive Selenium-Containing Peptides [J]. FOOD SCIENCE, 2021, 42(15): 346-355. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||