| [1] Cooke J. Dietary reduction of advanced glycation end products: an opportunity for improved nutrition care[J]. Journal of Renal Nutrition, 2017, 27(4): e23-e26.[2] Zhang X M, Chan C C, Stamp D, et al. Initiation and promotion of colonic aberrant crypt foci in rats by 5-hydroxymethy1-2-furaldehyde in thermolyzed sucrose[J]. Carcinogenesis, 1993, 14(4): 773-775.[3] 雷艾彤,苏丹,聂春超,等.丙烯酰胺风险暴露及毒性控制研究进展[J].食品研究与开发,2022,43(06):181-189.[4] Ahmed N, Thornalley P J. Advanced glycation endproducts: what is their relevance to diabetic complications?[J]. Diabetes, Obesity and Metabolism, 2007, 9(3): 233-245.[5] 杨洁,孙捷,王晓静.晚期糖基化终末产物抑制剂的研究进展[J].中国药物化学杂志,2019,29(05):398-406.DOI:10.14142/j.cnki.cn21-1313/r.2019.05.013.[6] Yeh W J, Hsia S M, Lee W H, et al. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings[J]. Journal of food and drug analysis, 2017, 25(1): 84-92. [7] Wu C H, Yen G C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts[J]. Journal of agricultural and food chemistry, 2005, 53(8): 3167-3173. [8] Jia L, Zhang L, Ye Y, et al. Effect and mechanism of Elaeagnus angustifolia flower and its major flavonoid tiliroside on inhibiting non-enzymatic glycosylation[J]. Journal of agricultural and food chemistry, 2019, 67(50): 13960-13968. [9] Cao Y, Xie L, Liu K, et al. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review[J]. Pharmacological Research, 2021, 174: 105919. [10] 张露,徐亮,涂宗财,等.基于荧光光谱技术的异槲皮素抑制晚期糖基化产物形成的机制研究[J].光谱学与光谱分析,2020,40(12):3755-3760.[11] 刘俊,王阳,熊子豪,等.糖基化、磷酸化及乙酰化修饰对α-乳白蛋白致敏性和人肠道菌群的影响[J].食品与发酵工业,2021,47(17):91-97.DOI:10.13995/j.cnki.11-1802/ts.028011.[12] Tu Z, Hu Y, Wang H, et al. Microwave heating enhances antioxidant and emulsifying activities of ovalbumin glycated with glucose in solid-state[J]. Journal of food science and technology, 2015, 52(3): 1453-1461. [13] Wu C H, Yen G C. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts[J]. Journal of agricultural and food chemistry, 2005, 53(8): 3167-3173.[14] Zhang L, Zhou W, Tu Z, et al. Influence of hydroxyl substitution on the suppression of flavonol in harmful glycation product formation and the inhibition mechanism revealed by spectroscopy and mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2020, 68(31): 8263-8273. [15] 卜单,涂宗财,刘光宪等.不同还原糖糖基化对超声波预处理α-乳白蛋白结构和抗氧化活性的影响[J/OL].食品科学:1-10[2022-09-19].http://kns.cnki.net/kcms/detail/11.2206.ts.20211220.1452.016.html.[16] Dias D T M, Palermo K R, Motta B P, et al. Rutin inhibits the in vitro formation of advanced glycation products and protein oxidation more efficiently than quercetin[J]. Revista de Ciências Farmacêuticas Básica e Aplicada, 2021, 42: 1-13.[17] Zeng L, Ding H, Hu X, et al. Galangin inhibits α-glucosidase activity and formation of non-enzymatic glycation products[J]. Food Chemistry, 2019, 271: 70-79. [18] Tupe R S, Bangar N, Nisar A, et al. Piperine exhibits preventive and curative effect on erythrocytes membrane modifications and oxidative stress against in vitro albumin glycation[J]. Journal of Food Biochemistry, 2021, 45(8): e13846. [19] Ajandouz E H, Tchiakpe L S, Ore F D, et al. Effects of pH on caramelization and Maillard reaction kinetics in fructose‐lysine model systems[J]. Journal of food science, 2001, 66(7): 926-931. [20] Namiki M. Advances in the Maillard reaction and glycation researches--mainly on the Namiki pathway[J]. Seikagaku. The Journal of Japanese Biochemical Society, 2003, 75(1): 37-42. [21] Matsuda H, Wang T, Managi H, et al. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities[J]. Bioorganic & medicinal chemistry, 2003, 11(24): 5317-5323. [22] 杨子涵,陈丹丹,季俊夫,等.果蔬汁中多酚介导的非酶褐变研究进展[J].食品工业科技,2021,42(24):367-375.DOI:10.13386/j.issn1002-0306.2020080207.[23] Zhang L, Zhou W, Tu Z, et al. Influence of hydroxyl substitution on the suppression of flavonol in harmful glycation product formation and the inhibition mechanism revealed by spectroscopy and mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2020, 68(31): 8263-8273. [24] 孙丽平,汪东风,徐莹,等.pH和加热时间对美拉德反应挥发性产物的影响[J].食品工业科技,2009,30(04):122-125.[25] Zhang X, Tao N, Wang X, et al. The colorants, antioxidants, and toxicants from nonenzymatic browning reactions and the impacts of dietary polyphenols on their thermal formation[J]. Food & function, 2015, 6(2): 345-355.[26] 孙涛,张亦鸣,谢晶,等.竹叶黄酮与谷胱甘肽对食源性非酶糖基化的抑制[J].食品工业科技,2014,35(10):106-109.DOI:10.13386/j.issn1002-0306.2014.10.015.[27] 代杨艳. 马来酸酐改性茶多酚的结构表征、抗氧化及其对非酶糖基化反应的抑制作用[D].广州:华南理工大学,, 2021: 49-71. [28] Zhang Y, Lu Y, Yang Y, et al. Comparison of non-covalent binding interactions between three whey proteins and chlorogenic acid: Spectroscopic analysis and molecular docking[J]. Food Bioscience, 2021, 41: 101035. [29] Zhang M, Zheng J, Ge K, et al. Glycation of α-lactalbumin with different size saccharides: Effect on protein structure and antigenicity[J]. International Dairy Journal, 2014, 34(2): 220-228. [30] Zhang L, Lu Y, Ye Y, et al. Insights into the mechanism of quercetin against BSA-fructose glycation by spectroscopy and high-resolution mass spectrometry: Effect on physicochemical properties[J]. Journal of agricultural and food chemistry, 2018, 67(1): 236-246. |