食品科学 ›› 2019, Vol. 40 ›› Issue (12): 196-202.doi: 10.7506/spkx1002-6630-20180423-286

• 成分分析 • 上一篇    下一篇

乳脂肪干法分提组分化学组成及热力学特性

王筠钠1,李 妍2,李 扬1,尹未华1,张列兵1,*   

  1. 1.中国农业大学食品科学与营养工程学院,北京 100083;2.北京工商大学食品学院,北京 100048
  • 出版日期:2019-06-25 发布日期:2019-06-28
  • 基金资助:
    现代农业(奶牛)产业技术体系建设专项(CARS-36)

Chemical Composition and Thermodynamic Characteristics of Milk Fat Fractions Obtained by Dry Fractionation

WANG Yunna1, LI Yan2, LI Yang1, YIN Weihua1, ZHANG Liebing1,*   

  1. 1. College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; 2. School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China
  • Online:2019-06-25 Published:2019-06-28

摘要: 在10~40 ℃范围内,通过逐级升温方式,将无水乳脂肪干法分提成低熔点L20、中熔点L30和L40、高熔点S40四组分,并通过气相色谱-质谱联用法对各组分中脂肪酸(fatty acid,FA)、甘油三酯(triglyceride,TAG)种类及含量进行测定。结果表明:随着分提温度升高,L20~S40,饱和脂肪酸(saturated fatty acid,SFA)含量呈递增而不饱和脂肪酸(unsaturated fatty acid,USFA)呈递减趋势,S40富含长链SFA,短链SFA及USFA较少,而L20与之正好相反,L30和L40 FA组成则介于L20~S40之间;热图分析显示:高熔点TAG较多存在于S40中,低熔点TAG主要存在于L20中,L30和L40则富含中熔点TAG;通过差示扫描量热仪分析,发现乳脂肪及各分提组分结晶-熔化曲线存在显著差异,结晶温度和熔化温度由高到低依次为S40>L40>L30>L20(P<0.05),结晶/熔化温度高,液态油与固态脂发生相转变时所需要的相变潜热就大,这为搅打稀奶油原料选择,搅打温度、时间和贮存温度等工艺配方参数设计提供理论依据;通过X射线晶体衍射分析,在长间距衍射中,高熔点组分S40、L40显示结晶状态均为以β’晶型为主的α、β’、β多晶型混晶,而L20和L30中无晶型衍射峰,说明低熔点组分为无定型状态的油脂;在短间距衍射中显示乳脂肪、S40、L40晶体以二倍链长(2L)(40.76、13.49 ?)和三倍链长(3L)(29.44 ?)方式堆积,而L20和L30仅以2L方式堆积。综上所述,脂肪饱和程度高则晶体稳定性强,结晶-熔化所产生的热焓大,适合制备硬脂产品,反之,则适合制备软脂或对硬度要求不高的产品。通过对不同熔点乳脂肪理化性质的系统研究,为实际生产中乳脂肪类型的不同需求选择提供参考数据。

关键词: 乳脂肪, 干法分提, 化学组成, 热力学, 晶型

Abstract: In this study, anhydrous milk fat was fractionated by stepwise melting into high-melting fraction (S40), middle-melting fraction (L40 and L30) and low-melting fraction (L20). Fatty acid (FA) and triacylglycerol (TAG) composition of each fraction were analyzed by gas chromatography-mass spectrometry (GC-MS). The crystal form and the thermodynamic profile were evaluated by X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. From the results, S40 was found to be rich in saturated long-chain fatty acids but lack short-chain fatty acids and unsaturated fatty acids, while the opposite was true for L20. L40 and L30 were between L20 and S40. The heat map showed that high-melting triacylglycerols (TAGs) were concentrated in S40, whereas low-melting TAGs predominated in L20. L40 and L30 were rich in middle-melting TAGs. There were striking differences in the thermodynamic profiles of the milk fat fractions, whose crystallization temperature (TC) and melting temperature (TM) followed the decreasing order of S40 > L40 > L30 > L20 (P < 0.05). When the the TC or TM was higher, the phase transition enthalpy was higher. Moreover, the β’ crystal was dominant in milk fat (MF), L40 and S40, but not in L20 or L30. Crystallization of MF, S40 and L40 showed the formation of 2L (40.76 and 13.49 ?) and 3L (29.44 ?) lamellar structures, whereas L30 and L20 showed the formation of only 2L. In summary, higher degree of fat saturation leads to stronger crystal stability and larger enthalpy during the crystallization-melting process, which is suitable for the preparation of hard dairy products. In contrast, lower degree of fat saturation is suitable for preparing soft dairy products. This research provides a theoretical basis for the different requirements of milk fat production.

Key words: milk fat, dry fractionation, chemical composition, thermodynamics, crystal form

中图分类号: