食品科学 ›› 2016, Vol. 37 ›› Issue (22): 210-215.doi: 10.7506/spkx1002-6630-201622032

• 安全检测 • 上一篇    下一篇

CE和HPLC测定水源水体中微囊藻毒素方法比较

王 阳1,2,徐明芳1,2,*,曾晓琮3,耿梦梦1,黎 明1,陈耕南1   

  1. 1.暨南大学生命科学技术学院,广东 广州 510632;
    2.暨南大学应急管理研究中心,广东 广州 510632;
    3.广东省食品检验所,广东省酒类检测中心,广东 广州 510435
  • 收稿日期:2016-05-26 出版日期:2016-11-16 发布日期:2017-02-22
  • 通讯作者: 徐明芳(1962—),女,教授,博士,研究方向为食品特性鉴定与分离技术、生物反应器工程。
  • 作者简介:王阳(1991—),女,硕士研究生,研究方向为饮用水中微囊藻毒素检测以及安全标准。E-mail:wangyang5221@126.com
  • 基金资助:
    暨南大学应急管理研究中心重大项目(JD2015008);广东省科技计划项目(2009B011300003)

Comparison of HPLC and CE for Estimation of Microcystins in Drinking Water Sources

WANG Yang1,2, XU Mingfang1,2,*, ZENG Xiaocong3, GENG Mengmeng1, LI Ming1, CHEN Gengnan1   

  1. 1. College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
    2. Research Center of Emergency Management, Jinan University, Guangzhou 510632, China;
    3. Guangdong Provincial Institute of Food Inspection, Guangdong Provincial Wine Testing Center, Guangzhou 510435, China
  • Received:2016-05-26 Online:2016-11-16 Published:2017-02-22

摘要: 利用毛细管电泳(capillary electrophoresis,CE)仪结合紫外-可见光二极管阵列检测器检测技术建立水体中痕量微囊藻毒素的检测新方法。通过与GB/T 20466—2006《水中微囊藻毒素的测定》高效液相色谱(high performance liquid chromatography,HPLC)方法对比分析,进行2 种检测技术的评价。CE检测条件为:毛细管柱(60 cm×75 μm i.d.),有效长度为44 cm,分离缓冲溶液为12 mmol/L硼酸盐(pH 9.0),分离电压25 kV,检测波长238 nm,压力6 895 Pa流体动力学进样;优化后的HPLC检测条件为:C18色谱柱(250 mm×4.6 mm i.d.,5 μm),甲醇-磷酸盐缓冲溶液(60∶40,V/V)为流动相,检测波长238 nm,柱温度35 ℃,流速1 mL/min。结果表明:CE对3 种微囊藻毒素MC-RR、MC-LR和MC-YR的检出限分别是0.16、0.20 μg/mL和0.24 μg/mL,HPLC对3 种微囊藻毒素的检出限分别为0.020、0.079 μg/mL和0.052 μg/mL,这2 个方法的灵敏度相差1 个数量级;加标回收率分别92.5%~106.0%和99.6%~102.5%,CE对应的保留时间和峰面积的精密度相对标准偏差为0.53%~0.64%和2.67%~3.29%;HPLC法的保留时间和峰面积精密度相对标准偏差为0.16%~0.53%和0.80%~1.53%。检测同一水样中微囊藻毒素含量,CE检测结果和HPLC结果之间差异不显著(P>0.05)。

关键词: 高效毛细管电泳, 高效液相色谱, 微囊藻毒素, 检测

Abstract: A new method for the detection of trace amounts of microcystins (MCs) in drinking water sources by capillary electrophoresis (CE) coupled with ultraviolet/visible light diode array detector (DAD) system was established and compared with the high performance liquid chromatography (HPLC) described in the Chinese standard method (GB/T 20466—2006). CE detection conditions were determined as follows: an uncoated fused-silica capillary tube (60 cm × 75 μm i.d.) with effective length of 44 cm as stationary phase, 12 mmol/L sodium borate solution (pH 9.0) as running buffer, separation voltage of 25 kV, sample injection under 6 895 Pa for 5 s, and detection wavelength of 238 nm. The HPLC method was performed with a C18 chromatographic column (250 mm × 4.6 mm i.d., 5 μm) using methanol: phosphate buffer solution (60:40, V/V) as mobile phase at a flow rate of 1 mL/min. The column temperature was set at 35 ℃, and the analyte was detected at 238 nm. The limits of detection (LOD) of the CE method for MC-RR, MC-LR and MC-YR were 0.16, 0.20 and 0.24 μg/mL, and those of the HPLC method were 0.020, 0.079, and 0.052 μg/mL, respectively. The sensitivity of the two methods differed by 1 order of magnitude. The recoveries of the CE and HPLC methods for three MCs were in range of 92.5%–106.0% and 99.6%–102.5%, respectively. The corresponding relative standard deviations (RSDs) of retention time and peak area were 0.53%–0.64% and 2.67%–3.29% for CE and 0.16%–0.53% and 0.80%–1.53% for HPLC, respectively. For the same water sample, the MCs content determined by CE was not significantly different from that determined by HPLC (P > 0.05).

Key words: capillary electrophoresis (CE), high performance liquid chromatography (HPLC), microcystins (MCs), detection

中图分类号: