FOOD SCIENCE ›› 0, Vol. ›› Issue (): 0-0.
• Reviews • Next Articles
Received:
2016-04-21
Revised:
2017-03-16
Online:
2017-05-15
Published:
2017-05-22
Contact:
guo qin
E-mail:guoqin_shiyin@163.com
Supported by:
CLC Number:
[1]董英, 钱希文, 白娟, 等.苦瓜改善胰岛素抵抗功能与作用机制研究进展[J].食品科学, 2013, 34(21):369-374[2] 叶青.脂代谢相关miRNA靶基因结合区域多态性与代谢综合征及其组分的分子流行病学研究[D]. 南京医科大学, 2013.[3] 黄建权, 王观春, 由凯.肥胖和代谢综合征的药物治疗与研究进展[J].药品评价, 2013, (9):25-32[4] van Rooij E.The art of microRNA research[J].Circulation Research, 2011, 108(2):219-34[5] 虞桂, 王阶.miRNA及其调控网络与中医治病求本机制研究[J].中华中医药杂志, 2012, (11):2789-2791[6] HARVEY, L.L. Harvey A. Plant Natural Products in Anti-Diabetic Drug Discovery[J].Current Organic Chemistry, 2010, 14(16):1670-1677[7] ROSS S A, DAVIS C D.The emerging role of microRNAs and nutrition in modulating health and disease[J].Annual Review of Nutrition, 2014, 34:305-336[8]HERRERA B M, LOCKSTONE HETAYLOR J M, RIA M, et al.Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes[J].Diabetologia, 2010, 53(6):1099-1109[9] ESGUERRA J L S, CAROLINE B, CILIO C M, et al.Esguerra J L S, Caroline B, Cilio C M, et al. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat[J].Plos One, 2011, 6(4):-[10] ARNER, E.Erik A, Niklas M, Agné K, et al. Adipose tissue microRNAs as regulators of CCL2 production in human obesity.[J]. , ,:-.[J].Diabetes, 2012, 61(8):1986-1993[11]Capobianco, V.miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity[J].Journal of Proteome Research, 2012, 11(6):3358-3369[12]VALENTINA C, CARMELA N, MADDALENA F, et al.miRNA and protein expression profiles of visceral adipose tissue reveal miR-141YWHAG and miR-520eRAB11A as two potential miRNAprotein target pairs associated with severe obesity[J].Journal of Proteome Research, 2012, 11(6):3358-69[13]DIAWARA M R, HUE C, WILDER S P, et al.Adaptive expression of microRNA-125a in adipose tissue in response to obesity in mice and men[J].Plos One, 2014, 9(3):e91375-e91375[14]CHEN L, DAI Y M, JI C B, et al.MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity[J].Molecular & Cellular Endocrinology, 2014, 393(1-2):65-74[15]刁雪红, 申锷, 胡兵, 等.糖尿病小鼠心肌组织表达谱分析[J].上海交通大学学报:医学版, 2010, 30(10):1194-1198[16]XUELING L.miR-375,a microRNA related to diabetes[J].Gene, 2013, 533(1):1-4[17]ZHU L, CHEN L, SHI C M, et al.MiR-335,an adipogenesis-related microRNA,is involved in adipose tissue inflammation[J].Cell Biochemistry & Biophysics, 2014, 68(2):283-290[18]张向君综述, 王加林审校.在肥胖及胰岛素抵抗中的研究进展[J].医学研究生学报, 2013, 26(6):666-668[19]GAO S, WASSLER M, ZHANG L, et al.MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis[J].Atherosclerosis, 2014, 232(1):171-9[20]GAO S, WASSLER M, ZHANG L, et al.MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis[J].Atherosclerosis, 2014, 232(1):171-9[21]ZHONG X, CHUNG A C K, CHEN H Y, et al.miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J].Diabetologia, 2013, 56(3):663-674[22]MENG S, CAO J T, ZHANG B, et al.Meng S,Cao JT,Zhang B,et al. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients,impairs their functional properties,via target gene spred-1[J].Journal of Molecular & Cellular Cardiology, 2012, 53(1):64-72[23]TAO Z, CHUNFANG L, LILING L, et al.Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals[J].Biomed Research International, 2013, 2013(4):761617-761617[24]POY M N, LENA E, JAN K, et al.A pancreatic islet-specific microRNA regulates insulin secretion[J].Nature, 2004, 432(7014):226-230[25]ABDELFATTAH, EL OUAAMARI, NADINE, BAROUKH, GEERT A, MARTENS, et al.miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J].Diabetes, 2008, 57(10):2708-17[26]MEERSON A, TRAURIG M, OSSOWSKI V, et al.Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α[J].Diabetologia, 2013, 56(9):1971-9[27]CHOU, W.Decreased microRNA-221 is associated with high levels of TNF-α in human adipose tissue-derived mesenchymal stem cells from obese woman[J].Cellular Physiology & Biochemistry, 2013, 32(1):127-137[28]YANIV L, EHUD B, REUT A F, et al.RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling[J].Diabetes, 2013, 63(2):433-445[29]NADINE B, RAVIER M A, LODER M K, et al.MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic beta-cell lines[J].生物物理学杂志, 2007, 282,(27):19575-[30]LOVIS P, GATTESCO S R.Regulation of the expression of components of the exocytotic machinery of insulin-secreting cells by microRNAs[J].Biological Chemistry, 2008, 389(3):305-312[31]VALéRIE P, AMAR A, VéRONIQUE P M, et al.MicroRNA-9 controls the expression of GranuphilinSlp4 and the secretory response of insulin-producing cells[J].Journal of Biological Chemistry, 2006, 281(37):26932-42[32]HE A, ZHU L, GUPTA N, CHANG Y, FANG F.Overexpression of micro ribonucleic acid 29,highly up-regulated in diabetic rats,leads to insulin resistance in 3T3-L1 adipocytes[J].Mol Endocrinol, 2007, 21(11):2785-2794[33]MIRKO T, JEAN H, JüRGEN S, et al.MicroRNAs 103 and 107 regulate insulin sensitivity[J].Nature, 2011, 474(7353):649-653[34]LIN CHEN, JIA HOU, LANFENG YE, et al.MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling[J].Scientific Reports, 2014, 4(1):3819-3819[35]LORENTE-CEBRIáN S, MEJHERT N, KULYTé A, et al.MicroRNAs regulate human adipocyte lipolysis: effects of miR-145 are linked to TNF-α[J].Plos One, 2014, 9(1):e86800-[36] 史春梅, 徐广峰, 季晨博, 等.miR-26b过表达对不同时间点人脂肪细胞分泌脂因子的影响[J].临床儿科杂志, 2013, (10):914-916[37]GAO S, WASSLER M, ZHANG L, et al.MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis[J].Atherosclerosis, 2014, 232(1):171-9[38]BALASUBRAMANYAM M; ARAVIND S; GOKULAKRISHNAN K; PRABU P; SATHISHKUMAR C; RANJANI H; MOHAN V.Impaired miR-146a expression links subclinical inflammation and insulin resistance in Type 2 diabetes[J].Molecular & Cellular Biochemistry, 2011, 351(1-2):197-205[39]SALAS-PéREZ F, CODNER E, VALENCIA E, et al.MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes[J].Immunobiology, 2013, 218(5):733-737[40]ZHONG X, CHUNG A C K, CHEN H Y, et al.miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes[J].Diabetologia, 2013, 56(3):663-674[41]BIAO F, YANAN C, SHALI C, et al.miRNA-1 regulates endothelin-1 in diabetes[J].Life Sciences, 2014, 118(2):18-23[42]KATO M, ZHANG J, WANG M, et al.MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors[J].Proceedings of the National Academy of Sciences, 2007, 104(9):3432-7[43] SHALI CHEN; PRASANTH PUTHANVEETIL; BIAO FENG; SCOT J et al.Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes[J].Journal of Cellular and Molecular Medicine, 2014, :-[44] ESGUERRA J L S, CAROLINE B, CILIO C M, et al.Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat[J].Plos One, 2011, 6(4):e18613-[45]TALI A S, LIA K, SHARON K R, et al.The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas[J].Plos One, 2009, 4(4):73-73[46]ABDELFATTAH, EL OUAAMARI, NADINE, BAROUKH, GEERT A, MARTENS, et al.miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J].Diabetes, 2008, 57(10):2708-17[47]POY M N, LENA E, JAN K, et al.A pancreatic islet-specific microRNA regulates insulin secretion[J].Nature, 2004, 432(7014):226-230[48]COLLARES C V, EVANGELISTA A F, XAVIER D J, et al.Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1,type 2,and gestational diabetes mellitus patients[J].Bmc Research Notes, 2013, 6(1):1-15[49]KONG L, ZHU J, HAN W, et al.Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study[J].Acta Diabetologica, 2011, 48(1):61-9[50]WANG X, SUNDQUIST J, Z?LLER B, et al.Determination of 14 Circulating microRNAs in Swedes and Iraqis with and without Diabetes Mellitus Type 2[J].Plos One, 2014, 9(1):e86792-[51] 叶青.脂代谢相关miRNA靶基因结合区域多态性与代谢综合征及其组分的分子流行病学研究[D]. 南京医科大学, 2013.[52]MARTINELLI R, NARDELLI C, PILONE V, et al.miR-519d Overexpression Is Associated With Human Obesity[J].Obesity, 2010, 18(11):2170-2176[53]ERIK A, NIKLAS M, AGNé K, et al.Adipose tissue microRNAs as regulators of CCL2 production in human obesity[J].Diabetes, 2012, 61(8):1986-93[54]HENEGHAN H M, MILLER N, MCANENA O J, et al.Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers[J].Journal of Clinical Endocrinology & Metabolism, 2011, 96(5):846-50[55]KELLER P, GBURCIK V, PETROVIC N, et al.Gene-chip studies of adipogenesis-regulated microRNAs in mouse primary adipocytes and human obesity[J].Bmc Endocrine Disorders, 2011, 11(1):1-11[56]ORTEGA F J, MORENO-NAVARRETE J M, GERARD P, et al.MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation[J].Plos One, 2010, 5(2):e9022-[57]VALENTINA C, CARMELA N, MADDALENA F, et al.miRNA and protein expression profiles of visceral adipose tissue reveal miR-141YWHAG and miR-520eRAB11A as two potential miRNAprotein target pairs associated with severe obesity[J].Journal of Proteome Research, 2012, 11(6):3358-69[58]ZHUANG G, MENG C, GUO X, et al.A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation[J].Circulation, 2012, 125(23):2892-2903[59]TING F, SUNG-E C, DONG-HYUN K, et al.Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho[J].Proceedings of the National Academy of Sciences, 2012, 109(40):16137-42[60]SHIFENG P, YATING Z, RUQIAN Z, et al.MicroRNA-130b and microRNA-374b mediate the effect of maternal dietary protein on offspring lipid metabolism in Meishan pigs[J].British Journal of Nutrition, 2013, 109(10):1-8[61]YU-CHENG W, YUYING L, XIN-YI W, et al.Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweightobesity[J].Diabetologia, 2013, 56(10):2275-85[62]HULSMANS M, VAN D E, MATHIEU C, et al.Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin[J].Plos One, 2012, 7(2):e32794-e32794[63]CHOI S E, FU T, SUNMI SEOK ?, et al.Elevated microRNA-34a in obesity reduces NAD + levels and SIRT1 activity by directly targeting NAMPT[J].Aging Cell, 2013, 12(6):1062-72[64]BENATTI R O, MELO A M, BORGES F O, et al.Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring[J].British Journal of Nutrition, 2014, 111(12):2112-22[65]FOLEY N H, O'NEILL L A.miR-107: a toll-like receptor-regulated miRNA dysregulated in obesity and type II diabetes[J].Journal of Leukocyte Biology, 2012, 92(3):521-7[66]NAKANISHI N, NAKAGAWA Y, TOKUSHIGE N.The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice[J].Biochemical & Biophysical Research Communications, 2009, 385(4):492-6[67]JAN-WILHELM K, CATHERINA B, A CHRISTINE K, et al.Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b[J].Nature, 2013, 494(7435):111-115[68]JORDAN S D, MARKUS K, WILLMES D M, et al.Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J].Nature Cell Biology, 2011, 13(4):434-46[69]CHONGTAE, KIM, HEEJIN, LEE, YOON MI, CHO, et al.TNFα-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation[J].Febs Letters, 2013, 587(23):3853-8[70]ORTEGA F J, MERCADER J M, JOSé MARíA M N, et al.Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization[J].Diabetes Care, 2014, 37(5):1375-83[71]FRANCISCO JOSé O, JOSEP MARíA M, VICTORIA C, et al.Targeting the circulating microRNA signature of obesity[J].Clinical Chemistry, 2013, 59(5):781-92[72]ANNA P P, ORTEGA F J, MERCADER J M, et al.Changes in circulating microRNAs are associated with childhood obesity[J].Journal of Clinical Endocrinology & Metabolism, 2013, 98(10):1655-60[73]MICHELE C, NING L, GRUETER C E, et al.Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*[J].Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38):15330-15335[74]张政, 罗勇军, 彭惠民, 等.早期糖尿病肾病相关微小在小鼠肾脏的表达变化[J].第三军医大学学报, 2010, 32(13):1383-1386[75]ZHANG Z, PENG H, CHEN J, et al.MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in dbdb mice[J].Febs Letters, 2009, 583(583):2009-14[76]YUNHUI C, XIAOJUN L, JIAN Y, et al.MicroRNA-145,a novel smooth muscle cell phenotypic marker and modulator,controls vascular neointimal lesion formation[J].Circulation Research, 2009, 105(2):158-66[77]ANDREA C, MARCO M, CHRISTINE V, et al.Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia[J].Circulation, 2011, 123(3):282-91[78]FERREIRA L R P, AMANDA FARAGE F, SANTOS R H B, et al.MicroRNAs miR-1,miR-133a,miR-133b,miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy[J].International Journal of Cardiology, 2014, 175(3):409-417[79]TURCHINOVICH A, WEIZ L, BURWINKEL B.Extracellular miRNAs: The mystery of their origin and function[J].Trends in Biochemical Sciences, 2012, 37(11):460-5[80]LIN Z, DONGXIA H, XI C, et al.Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA[J].Cell Research, 2012, 22(1):107-126[81]KAI W, HONG L, YUE Y, et al.The complex exogenous RNA spectra in human plasma: an interface with human gut biota?[J].Plos One, 2012, 7(12):1354-1357[82]KOSAKA N, IZUMI H, SEKINE K, et al.microRNA as a new immune-regulatory agent in breast milk[J].Silence, 2010, 1(1):7-7[83]DRAGAN M, CHRISTIANE D, ERWAN G, et al.Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols[J].Plos One, 2012, 7(1):156-167[84]DRAGAN M, CHRISTIANE D, ERWAN G, et al.Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: a new mechanism of the action of polyphenols[J].Plos One, 2012, 7(1):156-167[85]XIAO-YUN WEN ?, SHAO-YU WU ?, LI Z Q, et al.Ellagitannin (BJA3121),an anti-proliferative natural polyphenol compound,can regulate the expression of MiRNAs in HepG 2 cancer cells[J].Phytotherapy Research, 2009, 23(6):778-784[86]ANNA A A, CINTA B.Proanthocyanidins modulate microRNA expression in human HepG2 cells[J].Plos One, 2011, 6(10):148-148[87]BASELGA-ESCUDERO L, BLADé C, RIBAS-LATRE A, et al.Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats[J].Molecular Nutrition & Food Research, 2012, 56(11):1636-1646[88]YANG Y M, SEO S Y, KIM T H, et al.Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B,which is reversed by licorice flavonoid ? ?[J].Hepatology, 2012, 56(6):2209-20[89]KUTAY H, BAI S, DATTA J, et al.Downregulation of miR-122 in the rodent and human hepatocellular carcinomas[J].Journal of Cellular Biochemistry, 2006, 99(3):671-678[90]JOVEN J, ESPINEL E, RULL A, et al.Plant-derived polyphenols regulate expression of miRNA paralogs miR-103107 and miR-122 and prevent diet-induced fatty liver disease in hyperlipidemic mice[J].Biochimica Et Biophysica Acta, 2012, 1820(7):894-899[91]BOESCH-SAADATMANDI C, WAGNER A E, WOLFFRAM S, et al.Effect of quercetin on inflammatory gene expression in mice liver in vivo – role of redox factor 1,miRNA-122 and miRNA-125b[J].Pharmacological Research the Official Journal of the Italian Pharmacological Society, 2012, 65(5):523-530[92]GAEDICKE S, ZHANG X, SCHMELZER C, et al.Vitamin E dependent microRNA regulation in rat liver[J].Febs Letters, 2008, 582(23-24):3542-3546[93]ANNA A A, CINTA B.Proanthocyanidins modulate microRNA expression in human HepG2 cells[J].Plos One, 2011, 6(10):148-148[94]NORATTO G D, GABRIELA A M, TALCOTT S T, et al.Polyphenolics from ac?ai? ( Euterpe oleracea Mart) and red muscadine grape (Vitis rotundifolia ) protect human umbilical vascular Endothelial cells (HUVEC) from glucose- and lipopolysaccharide (LPS)-induced inflammation and target microRNA-126.[J].Journal of Agricultural & Food Chemistry, 2011, 59(14):7999-8012[95]NORATTO G D, YOUNGMOK K, TALCOTT S T, et al.Flavonol-rich fractions of yaupon holly leaves (Ilex vomitoria,Aquifoliaceae) induce microRNA-146a and have anti-inflammatory and chemopreventive effects in intestinal myofibroblast CCD-18Co cells[J].Fitoterapia, 2011, 82(4):557-69[96]WAGNER A E, BOESCH-SAADATMANDI C, DOSE J, et al.Anti-inflammatory potential of allyl-isothiocyanate – role of Nrf2,NF- κ B and microRNA-155[J].Journal of Cellular & Molecular Medicine, 2012, 16(4):836-43[97]TOMé-CARNEIRO J, LARROSA M, Yá?EZ-GASCóN M J, et al.One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease[J].Pharmacological Research, 2013, 72(3):69-82[98]BOESCH-SAADATMANDI C, LOBODA A, WAGNER A E, et al.Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155 ☆[J].Journal of Nutritional Biochemistry, 2011, 22(3):293-9[99]NIVEDITA B, STEPHEN T, STEPHEN S, et al.Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation[J].Breast Cancer Research & Treatment, 2012, 136(1):21-34[100]TILI E, MICHAILLE J B, ALDER H, et al.Resveratrol decreases the levels of miR-155 by upregulating miR-663,a microRNA targeting JunB and JunD[J].Carcinogenesis, 2010, 31(9):1561-1566[101]YUNZI C, WEICHENG L, TAO S, et al.Dihydroxyvitamin D promotes negative feedback regulation of TLR signaling via targeting microRNA-155-SOCS1 in macrophages[J].Journal of Immunology, 2013, 190(7):3687-95[102] PILAR P, FRANCISCA S, ANDREU P.Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice[J].Plos One, 2010, 5(9):e13005-[103] ZITMAN-GAL T, GREEN J, PASMANIK-CHOR M, et al.Vitamin D manipulates miR-181c, miR-20b and miR-15a in human umbilical vein endothelial cells exposed to a diabetic-like environment[J].Cardiovascular Diabetology, 2014, 13(1):8-[104]ZEINAB KORANY H, AL-OLAYAN E M.Curcumin reorganizes miRNA expression in a mouse model of liver fibrosis[J].Asian Pacific Journal of Cancer Prevention Apjcp, 2012, 13(13):5405-8[105]LAM T K, STEPHANIE S, YINGDONG Z, et al.Influence of quercetin-rich food intake on microRNA expression in lung cancer tissues[J].Cancer Epidemiology Biomarkers & Prevention, 2012, 21(12):2176-2184[106]AHN J, LEE H, CHANG H C, et al.High fat diet induced downregulation of microRNA-467b increased lipoprotein lipase in hepatic steatosis[J].Biochemical & Biophysical Research Communications, 2011, 414(4):664-669[107]TSANG W P, KWOK T T.Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells[J].Journal of Nutritional Biochemistry, 2010, 21(2):140-146[108]AHN J, LEE H, CHANG H J, et al.Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet[J].Molecular Nutrition & Food Research, 2012, 56(11):1665-1674[109]VINCIGUERRA M, SGROI A, VEVRAT-DUREBEX C, et al.Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes ? ?[J].Hepatology, 2009, 49(4):1176-84[110]TEROAO M, FRATELLIM, KUROSAKI M, et al.Induction of miR-21 by Retinoic Acid in Estrogen Receptor-positive Breast Carcinoma Cells[J].Journal of Biological Chemistry, 2011, 286(5):4027-4042[111] 张雪.雷公藤红素通过抑制NF-κB上调miR-223, 纠正软脂酸导致的HepG2细胞糖吸收下降[D]. 宁夏医科大学, 2014.[112] 袁绪胜.MicroRNA-126对ox-LDL诱导血管内皮细胞黏附功能的调控及丹皮酚干预机制[D]. 安徽中医药大学, 2013.[113] 郑征.Omega--3多不饱和脂肪酸通过影响miR--146b的表达实现对炎症的调节[D]. 青岛大学, 2013.[114] 张茜.天麦消渴片通过microRNA和mRNA调控网络改善糖代谢机制研究[D]. 北京协和医学院, 2014.[115][114贾蓉.miRNA--21在UUO幼年大鼠肾组织中的表达趋势及药物干预的效果[D]. 山西医科大学, 2014.[116] 谢凤燕.丹酚酸B阻止TGF-β1诱导的HK-2细胞转分化以及相关microRNA的变化[D]. 南京医科大学, 2012.2005: 45. |
[1] | ZHU Yinfei, KANG Songhao, LIU Xingyu, PENG Yu, LI Mo, NI Yuanying, WEN Xin. Application of High and new Technology in Processing of Natural Products and Healthy Foods [J]. FOOD SCIENCE, 2024, 45(5): 335-344. |
[2] | CAO Yuxin, ZHANG Yanqing, QI Wuqin, XIE Junbo. Food-Derived Natural Products Prevent Neurodegenerative Diseases by Regulating Mitophagy: A Review of Research Progress [J]. FOOD SCIENCE, 2024, 45(1): 301-312. |
[3] | ZHANG Mengyu, ZHANG Yanqing, FANG Leilei, XIE Junbo, WEI Yinghao. Research Progress on Intervention of Natural Products from Plants in Neurotoxicity of Acrylamide [J]. FOOD SCIENCE, 2023, 44(23): 332-352. |
[4] | FU Xiyu, ZHAO Minjie, FENG Fengqin. Research Progress on the Role of Medium-Chain Fatty Acids in Improving Metabolic Syndrome by Regulating Intestinal Microecology [J]. FOOD SCIENCE, 2023, 44(19): 417-428. |
[5] | BAO Meili, WANG Zhenyu. Functional Significance and Structure-Activity Relationship of Food-Derived Protein Tyrosine Phosphatase 1B Inhibitors [J]. FOOD SCIENCE, 2023, 44(17): 258-277. |
[6] | JIANG Tong, LI Longyan, ZHANG Jumei, XIE Xinqiang, WU Qingping. Research Progress on the Therapeutic Effect and Mechanism of Functional Probiotics on Metabolic Syndrome [J]. FOOD SCIENCE, 2023, 44(11): 233-243. |
[7] | LU Manman, QIAN Jing, YANG Yuhui, XIE Yanli, LE Guowei. Research Progress on Health Benefits and Implementation Strategies of Dietary Methionine Restriction [J]. FOOD SCIENCE, 2023, 44(11): 367-378. |
[8] | CHEN Sinan, ZHAO Hao’an, CAO Wei. A Review on the Mechanism of Action of Honey against Metabolic Syndrome [J]. FOOD SCIENCE, 2023, 44(1): 285-293. |
[9] | XIAO Jie, HOU Can, CHEN Xin, YING Jian, ZHU Xuan, WANG Liming, NIU Xinghe, TANG Pei’an, LI Song, HAO Binxiu, CHANG Guosheng. Dark Tea with Pericarpium Citri Reticulatae Improves Glucose Metabolism and Lipid Metabolism Disorders Induced by High-Fat Diet in Mice [J]. FOOD SCIENCE, 2022, 43(5): 133-142. |
[10] | ZHANG Yongsheng, LIU Dongmin, WANG Jianhui, LI Chiling, LI Yan, FANG Fang, CHEN Qijie, NING Jingheng, LI Lin. Advances in Understanding the Effects of Plant-Derived Natural Products on Biogenic Amine Reduction in Foods [J]. FOOD SCIENCE, 2022, 43(3): 315-324. |
[11] | ZHAO Mei, CHANG Ling, SONG Zehe, HE Xi. Interactions between Plant Polyphenols and Intestinal Microbiota and Their Effects on Metabolic Diseases [J]. FOOD SCIENCE, 2021, 42(5): 305-313. |
[12] | ZHANG Lin, GAO Lei, WANG Chao, ZHAO Zijian, DUAN Cuicui, ZHAO Yujuan, YANG Ge, LI Shengyu. Pediococcus acidilactici AS185 Improves Metabolic Syndrome Induced by a High-Fat and High-Fructose Diet [J]. FOOD SCIENCE, 2021, 42(1): 215-221. |
[13] | GUO Qin, ZHANG Chunyan, PENG Kai, CAI Jiahui. Recent Progress in Plant-Derived Natural Products as Antibiotic Adjuvants [J]. FOOD SCIENCE, 2020, 41(23): 255-265. |
[14] | QU Hang, GAO Xin, YI Juanjuan, WANG Zhenyu. Review on the Protective Effects of Food-Derived Natural Compounds on Alcohol-Induced Liver Injury [J]. FOOD SCIENCE, 2020, 41(17): 283-290. |
[15] | ZHANG Yanhua, WANG Xiong, WANG Wenli, ZHANG Lei, CHE Huilian, ZHANG Yali. Effects of Grape Seed Proanthocyanins on High-Fat and High-Sugar Diet-Induced Metabolic Syndrome in Rats [J]. FOOD SCIENCE, 2020, 41(1): 112-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||